Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

The second edition of this textbook  provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions.  Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.

 The authors cover the following four general topics:

 - Representation and modeling of dynamical systems of the types described above

- Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions

- Specialization of this stability theory to finite-dimensional dynamical systems

- Specialization of this stability theory to infinite-dimensional dynamical systems

Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems.  It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.

Review of the First Edition:

“The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems.  [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”

- Alessandro Astolfi, IEEE Control Systems Magazine, February 2009

1121701032
Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

The second edition of this textbook  provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions.  Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.

 The authors cover the following four general topics:

 - Representation and modeling of dynamical systems of the types described above

- Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions

- Specialization of this stability theory to finite-dimensional dynamical systems

- Specialization of this stability theory to infinite-dimensional dynamical systems

Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems.  It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.

Review of the First Edition:

“The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems.  [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”

- Alessandro Astolfi, IEEE Control Systems Magazine, February 2009

89.99 In Stock
Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

Stability of Dynamical Systems: On the Role of Monotonic and Non-Monotonic Lyapunov Functions

eBook2nd ed. 2015 (2nd ed. 2015)

$89.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The second edition of this textbook  provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions.  Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.

 The authors cover the following four general topics:

 - Representation and modeling of dynamical systems of the types described above

- Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions

- Specialization of this stability theory to finite-dimensional dynamical systems

- Specialization of this stability theory to infinite-dimensional dynamical systems

Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems.  It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.

Review of the First Edition:

“The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems.  [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”

- Alessandro Astolfi, IEEE Control Systems Magazine, February 2009


Product Details

ISBN-13: 9783319152752
Publisher: Birkhäuser
Publication date: 03/30/2015
Series: Systems & Control: Foundations & Applications
Sold by: Barnes & Noble
Format: eBook
File size: 16 MB
Note: This product may take a few minutes to download.

About the Author

Anthony N. Michel, PhD, is Professor Emeritus in the College of Engineering at the University of Notre Dame.

Ling Hou, PhD, is Professor in the Department of Electrical and Computer Engineering at St. Cloud State University.

Derong Liu, PhD, is Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Chicago.

Table of Contents

Introduction.- Dynamical Systems.- Fundamental Theory: The Principal Stability and Boundedness Results on Metric Spaces.-Fundamental Theory: Specialized Stability and Boundedness Results on Metric Spaces.- Applications to a Class of Discrete-Event Systems.- Finite-Dimensional Dynamical Systems.- Finite-Dimensional Dynamical Systems: Specialized Results.- Applications to Finite-Dimensional Dynamical Systems.- Infinite-Dimensional Dynamical Systems.

From the B&N Reads Blog

Customer Reviews