Table of Contents
.- Single-source Domain Generalization for Coronary Vessels Segmentation in X-ray Angiography. 
 .- Constraint-Based Model in Multimodal Learning to Improve Ventricular Arrhythmia Prediction. 
 .- Automated estimation of cardiac stroke volumes from computed tomography. 
 .- Peridevice leaks following left atrial appendage occlusion - analysis with morphology descriptive centerlines and explainable graph attention network. 
 .- Improved 3D Whole Heart Geometry from Sparse CMR Slices. 
 .- CavityBASNet: Cavity-focused Biatrial Automatic Segmentation on LGE MRI with augmented input channel and left-right myocardium splitting. 
 .- A novel MRI-based electrophysiological computational model of progressive doxorubicin-induced fibrosis in the left ventricle. 
 .- Quantitative comparison of blood flow patterns from in silico simulations and 4D flow data before and after left atrial occlusion. 
 .- Panoramic anatomical context in 3D intracardiac echocardiography (ICE) with 3D registration and geometry-based image fusion. 
 .- Physics-Informed Neural Networks can accurately model cardiac electrophysiology in 3D geometries and fibrillatory conditions. 
 .- Beyond the standards: Fully-Automated Aortic Annulus Segmentation on Contrast-free Magnetic Resonance Imaging using a Computational Aorta Unwrapping Method. 
 .- Coronary Artery Calcium Scoring from Non-Contrast Cardiac CT Using Deep Learning With External Validation. 
 .- Effective approach based on student-teacher self-supervised deep learning for Multi-class Bi-Atrial Segmentation Challenge. 
 .- Sampling-Pattern-Agnostic MRI Reconstruction through Adaptive Consistency Enforcement with Diffusion Model. 
 .- HyperCMR: Enhanced Multi-Contrast CMR Reconstruction with Eagle Loss. 
 .- A Multi-Contrast Cardiac MRI Reconstruction Method Using an Advanced Unrolled Network Architecture. 
 .- Implicit Neural Representations for Registration of Left Ventricle Myocardium During a Cardiac Cycle. 
 .- Deep Multi-contrast Cardiac MRI Reconstruction via vSHARP with Auxil iary Refinement Network. 
 .- Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients. 
 .- Two-Stage nnU-Net for Automatic Multi-class Bi-Atrial Segmentation from LGE-MRIs. 
 .- An Ensemble of 3D Residual Encoder UNet Models for Solving Multi-Class Bi-Atrial Segmentation Challenge. 
 .- Evaluating Convolution, Attention, and Mamba Based U-Net Models for Multi-Class Bi-Atrial Segmentation from LGE-MRI. 
 .- On the Foundation Model for Cardiac MRI Reconstruction. 
 .- Multi-Loss 3D Segmentation for Enhanced Bi-Atrial Segmentation. 
 .- Classification of Mitral Regurgitation from Cardiac Cine MRI using Clinically-Interpretable Morphological Features. 
 .- Gaussian Process Emulators for Few-Shot Segmentation in Cardiac MRI. 
 .- Global Control for Local SO(3)-Equivariant Scale-Invariant Vessel Segmentation. 
 .- A self-distillation bi-atrial segmentation network for Cardiac MRI. 
 .- Adaptive Unrolling Applied to the CMRxRecon2024 Callenge. 
 .- Reducing the number of leads for ECG Imaging with Graph Neural Networks and meaningful latent space. 
 .- Rotor Core Projection Ablation (RCPA): Novel Computational Approach to Catheter Ablation Therapy for Atrial Fibrillation. 
 .- Automated pipeline for regional epicardial adipose tissue distribution analysis in the left atrium. 
 .- Low-Rank Conjugate Gradient-Net for Accelerated Cardiac MR Imaging. 
 .- SBAW-Net: Segmentation of Bi-Atria and Wall Network - Offering Valuable Insights into Challenge Data. 
 .- ResNet-based Convolutional Framework for Segmenting Left Atrial Scars and Cavities. 
 .- EAT-Mamba: Epicardial Adipose Tissue Segmentation from Multi-modal Dixon MRI. 
 .- Neural Fields for Continuous Periodic Motion Estimation in 4D Cardiovascular Imaging. 
 .- Exploring CNN and Transformer Architectures for Multi-class Bi-Atrial Segmentation from Late Gadolinium-Enhanced MRI. 
 .- EigenBoundaries for the temporally regularized segmentation of echocardiographic images. 
 .- Dynamic Cardiac MRI Reconstruction via Separate Optimization of K-space and Hybrid-domian Spatial-temporal Feature Fusion. 
 .- an Interpretable Learning of Risk Explain Ventricular Arrhythmia Mechanism. 
 .- 3D Left Ventricular Reconstruction from 2D Echocardiograms for Reliable Volume Estimation. 
 .- Comparing Left Atrial Spontaneous Echo Contrast Intensity with Gaussian Process Emulator Predictions. 
 .- UPCMR: A Universal Prompt-guided Model for Random Sampling Cardiac MRI Reconstruction. 
 .- An All-in-one Approach for Accelerated Cardiac MRI Reconstruction. 
 .- Improving the Scan-rescan Precision of AI-based CMR Biomarker Estimation.