Supervised Machine Learning for Text Analysis in R

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing.

This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

1139358617
Supervised Machine Learning for Text Analysis in R

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing.

This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

68.99 In Stock
Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R

by Emil Hvitfeldt, Julia Silge
Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R

by Emil Hvitfeldt, Julia Silge

eBook

$68.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing.

This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.


Product Details

ISBN-13: 9781000461992
Publisher: CRC Press
Publication date: 11/03/2021
Series: Chapman & Hall/CRC Data Science Series
Sold by: Barnes & Noble
Format: eBook
Pages: 402
File size: 28 MB
Note: This product may take a few minutes to download.

About the Author

Emil Hvitfeldt is a clinical data analyst working in healthcare, and an adjunct professor at American University where he is teaching statistical machine learning with tidymodels. He is also an open source R developer and author of the textrecipes package.

Julia Silge is a data scientist and software engineer at RStudio PBC where she works on open source modeling tools. She is an author, an international keynote speaker and educator, and a real-world practitioner focusing on data analysis and machine learning practice.

Table of Contents

1. Language and modeling. 2. Tokenization. 3. Stop words. 4. Stemming. 5. Word Embeddings. 6. Regression. 7. Classification. 8. Dense neural networks. 9. Long short-term memory (LSTM) networks. 10. Convolutional neural networks.

From the B&N Reads Blog

Customer Reviews