The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

1116846648
The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

49.99 In Stock
The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

eBook2013 (2013)

$49.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.


Product Details

ISBN-13: 9783319008288
Publisher: Springer International Publishing
Publication date: 10/01/2013
Series: Lecture Notes in Mathematics , #2085
Sold by: Barnes & Noble
Format: eBook
File size: 4 MB

Table of Contents

Introduction.- The fine dynamics of the Chafee- Infante equation.- The stochastic Chafee- Infante equation.- The small deviation of the small noise solution.- Asymptotic exit times.- Asymptotic transition times.- Localization and metastability.- The source of stochastic models in conceptual climate dynamics.

From the B&N Reads Blog

Customer Reviews