The Science of Algorithmic Trading and Portfolio Management
The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.
1125545005
The Science of Algorithmic Trading and Portfolio Management
The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.
69.95 In Stock
The Science of Algorithmic Trading and Portfolio Management

The Science of Algorithmic Trading and Portfolio Management

by Robert Kissell
The Science of Algorithmic Trading and Portfolio Management

The Science of Algorithmic Trading and Portfolio Management

by Robert Kissell

eBook

$69.95 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.

Product Details

ISBN-13: 9780124016934
Publisher: Elsevier Science & Technology Books
Publication date: 10/01/2013
Sold by: Barnes & Noble
Format: eBook
Pages: 496
File size: 9 MB

About the Author

Robert Kissell, Ph.D., is President of Kissell Research Group, a global financial and economic consulting firm specializing in quantitative modeling, statistical analysis, and algorithmic trading. He is also a professor at Molloy College in the School of Business and an adjunct professor at the Gabelli School of Business at Fordham University. He has held several senior leadership positions with prominent bulge bracket investment banks including UBS Securities where he was Executive Director of Execution Strategies and Portfolio Analysis, and at JP Morgan where he was Executive Director and Head of Quantitative Trading Strategies. He was previously at Citigroup/Smith Barney where he was Vice President of Quantitative Research, and at Instinet where he was Director of Trading Research. He began his career as an Economic Consultant at R.J. Rudden Associates specializing in energy, pricing, risk, and optimization. Dr. Kissell has written several books and published dozens of journal articles on Algorithmic Trading, Risk, and Finance. He is a coauthor of the CFA Level III reading titled "Trade Strategy and Execution, CFA Institute 2019.
Robert Kissell, Ph.D., is President of Kissell Research Group, a global financial and economic consulting firm specializing in quantitative modeling, statistical analysis, and algorithmic trading. He is also a professor at Molloy College in the School of Business and an adjunct professor at the Gabelli School of Business at Fordham University. He has held several senior leadership positions with prominent bulge bracket investment banks including UBS Securities where he was Executive Director of Execution Strategies and Portfolio Analysis, and at JP Morgan where he was Executive Director and Head of Quantitative Trading Strategies. He was previously at Citigroup/Smith Barney where he was Vice President of Quantitative Research, and at Instinet where he was Director of Trading Research. He began his career as an Economic Consultant at R.J. Rudden Associates specializing in energy, pricing, risk, and optimization. Dr. Kissell has written several books and published dozens of journal articles on Algorithmic Trading, Risk, and Finance. He is a coauthor of the CFA Level III reading titled “Trade Strategy and Execution,” CFA Institute 2019.”

Table of Contents

I - Introduction 1. Algorithmic Trading 2. Market Microstructure 3. Transaction Cost Analysis (TCA) II – Mathematical Modeling 4.. Market Impact 5. Multi-Asset Class Market Impact 6 Price 7. Algorithmic Trading Risk 8. Algorithmic Decision Making Framework 9. Portfolio Algorithms III – Portfolio Management 10. Portfolio Construction 11. Quant Factors 12. Black Box Models

What People are Saying About This

From the Publisher

Offers students and professionals an introduction to algorithmic trading as well as advanced techniques on portfolio construction and the stock selection process

From the B&N Reads Blog

Customer Reviews