The Wigner Transform available in Hardcover, Paperback, eBook

- ISBN-10:
- 1786343096
- ISBN-13:
- 9781786343093
- Pub. Date:
- 05/23/2017
- Publisher:
- World Scientific Publishing Europe Ltd
- ISBN-10:
- 1786343096
- ISBN-13:
- 9781786343093
- Pub. Date:
- 05/23/2017
- Publisher:
- World Scientific Publishing Europe Ltd

Buy New
$58.00-
SHIP THIS ITEMIn stock. Ships in 1-2 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Overview
Product Details
ISBN-13: | 9781786343093 |
---|---|
Publisher: | World Scientific Publishing Europe Ltd |
Publication date: | 05/23/2017 |
Series: | Advanced Textbooks In Mathematics |
Pages: | 252 |
Product dimensions: | 6.00(w) x 8.90(h) x 0.60(d) |
Table of Contents
Preface vii
Introduction ix
Part I General Mathematical Framework 1
1 Phase Space Translations and Reflections 3
1.1 Some Notation 3
1.1.1 The spaces Rnx and Rnp 3
1.1.2 The symplectic structure of phase space 4
1.1.3 Some usual function spaces 5
1.1.4 Fourier transform 6
1.2 The Heisenberg-Weyl and Grossmann-Rover Operators 6
1.2.1 The displacement Hamiltonian 6
1.2.2 The Heisenberg Weyl operators 7
1.2.3 The Grossmann-Royer parity operators 9
1.3 A Functional Relation Between T(Z0) and R(Z0) 12
1.4 Quantization of Exponentials 14
2 The Cross-Wigner Transform 17
2.1 Definitions of the Cross-Wigner Transform 17
2.1.1 First definition 17
2.1.2 Wigner's definition 18
2.1.3 The Gabor transform and its variants 19
2.1.4 Extension to tempered distributions 20
2.2 Properties of the Cross-Wigner Transform 22
2.2.1 Elementary algebraic properties 22
2.2.2 Analytical properties and continuity 24
2.2.3 The marginal properties 26
2.2.4 Translating Wigner transforms 27
3 The Cross-Ambiguity Function 31
3.1 Definition of the Cross-Ambiguity Function 31
3.1.1 Definition using the Heisenberg Weyl operator 31
3.1.2 Traditional definition 32
3.1.3 The Fourier-Wigner transform 33
3.2 Properties and Relation with the Wigner Transform 34
3.2.1 Properties of the cross-ambiguity function 34
3.2.2 Relation with the cross-Wigner transform 35
3.2.3 The maximum of the ambiguity function 37
4 Weyl Operators 39
4.1 The Notion of Weyl Operator 39
4.1.1 Weyl's definition, and rigorous definitions 39
4.1.2 The distributional kernel of a Weyl operator 43
4.1.3 Relation with the cross-Wigner transform 47
4.2 Some Properties of the Weyl Correspondence 49
4.2.1 The adjoint of a Weyl operator 49
4.2.2 An L2 boundedness result 50
5 Symplectic Covariance 53
5.1 Symplectic Covariance Properties 53
5.1.1 Review of some properties of Mp(n) and Sp(n) 53
5.1.2 Proof of the symplectic covariance property 55
5.1.3 Symplectic covariance of Weyl operators 58
5.2 Maximal Covariance 59
5.2.1 Antisymplectic matrices 60
5.2.2 The maximality property 62
5.2.3 The case of Weyl operators 64
6 The Moyal Identity 67
6.1 Precise Statement and Proof 67
6.1.1 The general Moyal identity 67
6.1.2 A continuity result 69
6.2 Reconstruction Formulas 70
6.2.1 Reconstruction using the cross-Wigner transform 70
6.2.2 Reconstruction using the cross-ambiguity function 71
6.3 The Wavepacket Transforms 72
6.3.1 Definition 72
6.3.2 Properties of the wavepacket transform 73
7 The Feichtinger Algebra 77
7.1 Definition and First Properties 77
7.1.1 Definition of S0(Rn) 77
7.1.2 Analytical properties of S0(Rn) 82
7.1.3 The algebra property of S0(Rn) 85
7.2 The Dual Space S'0(Rn) 86
7.2.1 Description of S'0(Rn) 86
7.2.2 The Gelfand triple (S0, L2, S'0) 87
8 The Cohen Class 89
8.1 Definition 89
8.14 The marginal conditions 92
8.1.2 Generalization of Moyal's identity 94
8.1.3 The operator calculus associated with Q 95
8.2 Two Examples 97
8.2.1 The generalized Husimi distribution 97
8.2.2 The Born -Jordan transform 100
9 Gaussians and Hermite Functions 103
9.1 Wigner Transform of Generalized Gaussians 103
9.1.1 Generalized Gaussian functions 103
9.1.2 Explicit results 105
9.1.3 Cross-ambiguity function of a Gaussian 108
9.1.4 Hudson's theorem 109
9.2 The Case of Hermite Functions 109
9.2.1 Short review of the Hermite and Laguerre functions 109
9.2.2 The Wigner transform of Hermite functions 112
9.2.3 The cross-Wigner transform of Hermite functions 113
9.2.4 Flandrin's conjecture 116
10 Sub-Gaussian Estimates 119
10.1 Hardy's Uncertainty Principle 119
10.1.1 The one-dimensional case 119
10.1.2 Two lemmas 120
10.1.3 The multidimensional Hardy uncertainty principle 121
10.2 Sub-Gaussian Estimates for the Wigner Transform 123
10.2.1 Statement of the result 123
10.2.2 First proof 124
10.2.3 Second proof 126
Part II Applications to Quantum Mechanics 129
11 Moyal Star Product and Twisted Convolution 131
11.1 The Moyal Product of Two Symbols 131
11.1.1 Definition of the Moyal product 131
11.1.2 Twisted convolution 134
11.2 Bopp Operators 136
11.2.1 Bopp shifts 136
11.2.2 Definition and justification of Bopp operators 139
11.2.3 The intertwining property 141
12 Probabilistic Interpretation of the Wigner Transform 143
12.1 Introduction 143
12.1.1 Back to Wigner 143
12.1.2 Averaging observables and symbols 144
12.2 The Strong Uncertainty Principle 146
12.2.1 Variances and covarianccs 146
12.2.2 The uncertainty principle 147
12.2.3 The quantum covariance matrix 148
12.3 The Notion of Weak Value 150
12.3.1 Definition of weak values 150
12.3.2 A complex phase space distribution 152
12.3.3 Reconstruction using weak values 152
13 Mixed Quantum States and the Density Operator 155
13.1 Trace Class Operators 155
13.1.1 Definition and general properties 156
13.1.2 The case of Weyl operators 157
13.2 The Density Operator 159
13.2.1 The Wigner transform of a mixed state 159
13.2.2 A characterization of density operators 161
13.2.3 Uncertainty principle for density operators 162
13.2.4 Covariance matrix 165
14 The KLM Conditions and the Narcowich-Wigner Spectrum 169
14.1 The Quantum Bochner Theorem 169
11.1.1 Berliner's theorem 169
14.1.1 The quantum case: the KLM conditions 171
14.1.2 The quantum covariance matrix 175
14.2 The Nareowich-Wigner Spectrum 179
14.2.1 η-Positive functions 179
14.2.2 The Narcowich-Wigner spectrum of some states 180
15 Wigner Transform and Quantum Blobs 183
15.1 Quantum Blobs and Phase Space 183
15.1.1 Geometric definition of a quantum blob 184
15.1.2 Quantum phase space 185
15.2 Quantum Blobs and the Wigner Transform 186
15.2.1 The basic example 186
15.2.2 Covariance ellipsoid and quantum blobs 187
15.3 From One Quantum Blob to Another 189
15.3.1 The general case 190
15.3.2 Averaging over quantum blobs 192
Appendix A Sp(n) and Mp(n) 195
A.1 The Symplectic Group 195
A.2 The Metaplectic Group 198
A.3 The Inhomogeneous Metaplectic Group 200
Appendix B The Symplectic Fourier Transform 203
Appendix C Symplectic Diagonalization 207
C.1 Williamson's Theorem 207
C.2 The Block-Diagonal Case 209
C.3 The Symplectic Case 210
C.4 The Symplectic Spectrum 211
Appendix D Symplectic Capacities 215
D.1 Gromov's Non-squeezing Theorem 215
D.2 Symplectic Capacities 216
D.3 Properties 217
D.4 The Symplectic Capacity of an Ellipsoid 218
Bibliography 221
Index 227