ISBN-10:
047074927X
ISBN-13:
9780470749272
Pub. Date:
05/24/2011
Publisher:
Wiley
Thermally and Optically Stimulated Luminescence: A Simulation Approach / Edition 1

Thermally and Optically Stimulated Luminescence: A Simulation Approach / Edition 1

by Reuven Chen, Vasilis Pagonis

Hardcover

View All Available Formats & Editions
Current price is , Original price is $170.0. You
Select a Purchase Option
  • purchase options
    $126.07 $170.00 Save 26% Current price is $126.07, Original price is $170. You Save 26%.
  • purchase options

Product Details

ISBN-13: 9780470749272
Publisher: Wiley
Publication date: 05/24/2011
Pages: 434
Product dimensions: 6.80(w) x 9.90(h) x 1.10(d)

About the Author

Reuven Chen
Professor Reuven Chen is a Professor Emeritus at Tel-AvivUniversity. He has been working on thermoluminescence, opticallystimulated luminescence and other related topics in the last 48years. Professor Chen has published ~170 scientific papers and twobooks. He has been a Visiting Professor at several universities inthe US, Britain, Canada, Australia, Brazil, France and Hong-Kong.At present, he is an Associate Editor of Radiation Measurements andreferee for several international journals.

Vasilis Pagonis
Professor Vasilis Pagonis is a Professor of Physics at McDanielCollege. His research involves working on modeling properties ofdosimetric materials and their applications in luminescence datingand radiation dosimetry. Professor Pagonis has published ~70scientific papers, as well as the book Numerical and practicalexercises in thermoluminescence, published by Springer in 2006.He currently holds the Kopp endowed chair in the physical sciencesat McDaniel College.

Table of Contents

About the Authors.

Preface.

Acknowledgements.

1 Introduction.

1.1 The Physical Mechanism of TL and OSL Phenomena.

1.2 Historical Development of TL and OSL Dosimetry.

1.3 Historical Development of Luminescence Models.

2 Theoretical Basis of Luminescence Phenomena.

2.1 Energy Bands and Energy Levels in Crystals.

2.2 Trapping Parameters Associated with Impurities inCrystals.

2.3 Capture Rate Constants.

2.4 Thermal Equilibrium.

2.5 Detailed Balance.

2.6 Arrhenius Model.

2.7 Rate Equations in the Theory of Luminescence.

2.8 Radiative Emission and Absorption.

2.9 Mechanisms of Thermal Quenching in Dosimetric Materials.

2.10 A Kinetic Model for the Mott–Seitz Mechanism inQuartz.

2.11 The Thermal Quenching Model for Alumina by Nikiforov etal..

3 Basic Experimental Measurements.

3.1 General Approach to TL and OSL Phenomena.

3.2 Excitation Spectra.

3.3 Emission Spectra.

3.4 Bleaching of TL and OSL.

4 Thermoluminescence: The Equations Governing a TLPeak.

4.1 Governing Equations.

4.2 One Trap-One Recombination Center (OTOR) Model.

4.3 General-order Kinetics.

4.4 Mixed-order Kinetics.

4.5 Q and P Functions.

4.6 Localized Transitions.

4.7 Semilocalized Transition (SLT) Models of TL.

5 Basic Methods for Evaluating Trapping Parameters.

5.1 The Initial-rise Method.

5.2 Peak-shape Methods.

5.3 Methods of Various Heating Rates.

5.4 Curve Fitting.

5.5 Developing Equations for Evaluating Glow Parameters.

5.6 The Photoionization Cross Section.

6 Additional Phenomena Associated with TL.

6.1 Phosphorescence Decay.

6.2 Isothermal Decay of TL Peaks.

6.3 Anomalous Fading and Anomalous Trapping Parameters ofTL.

6.4 Competition Between Excitation and Bleaching of TL.

6.5 A Model for Mid-term Fading in TL Dating; Continuum ofTraps.

6.6 Photo-transferred Thermoluminescence (PTTL).

6.7 TL Response of Al2O3:C to UV Illumination.

6.8 Dependence of the TL Excitation on AbsorptionCoefficient.

6.9 TL Versus Impurity Concentration; ConcentrationQuenching.

6.10 Creation and Stabilization of TL Traps DuringIrradiation.

6.11 Duplicitous TL Peak due to Release of Electrons andHoles.

6.12 Simulations of the Duplicitous TL Peak.

7 Optically Stimulated Luminescence (OSL).

7.1 Basic Concepts of OSL.

7.2 Dose Dependence of OSL; Basic Considerations.

7.3 Numerical Results of OSL Dose Dependence.

7.4 Simulation of the Dose-rate Dependence of OSL.

7.5 The Role of Retrapping in the Dose Dependence of POSL.

7.6 Linear-modulation OSL (LM-OSL).

7.7 Unified Presentation of TL, Phosphorescence and LM-OSL.

7.8 The New Presentation of LM-OSL Within the OTOR Model.

7.9 TL-like Presentation of CW-OSL in the OTOR Model.

7.10 Dependence of Luminescence on Initial Occupancy; OTORModel.

7.11 TL Expression Within the Unified Presentation.

7.12 Pseudo LM-OSL and OSL Signals under Various StimulationModes.

7.13 OSL Decay and Stretched-exponential Behavior.

7.14 Optically Stimulated Exoelectron Emission.

7.15 Simulations of OSL Pulsed Annealing Techniques.

8 Analytical and Approximate Expressions of Dose Dependenceof TL and OSL.

8.1 General Considerations.

8.2 Competition During Excitation.

8.3 Competition During Heating.

8.4 The Predose (Sensitization) Effect.

8.5 Sensitization and De-sensitization in Quartz.

8.6 Dose-rate Dependence.

8.7 Sublinear Dose Dependence of TL and LM-OSL in the OTORSystem.

8.8 Dose-dependence and Dose-rate Behaviors by Simulations.

8.9 Simulations of the Dose-rate Effect of TL.

8.10 Nonmonotonic Dose Dependence of TL and OSL.

8.11 Nonmonotonic Dose Dependence of TL; Simulations.

8.12 Nonmonotonic Effect of OSL; Results of Simulations.

9 Simulations of TL and OSL in Dating Procedures.

9.1 The Predose Effect in Quartz.

9.2 Simulation of Thermal Activation Characteristics inQuartz.

9.3 The Bailey Model for Quartz.

9.4 Simulation of the Predose Dating Technique.

9.5 The Single Aliquot Regenerative Dose (SAR) Technique.

9.6 Thermally Transferred OSL (TT-OSL).

10 Advanced Methods for Evaluating TrappingParameters.

10.1 Deconvolution.

10.2 Monte-Carlo Methods.

10.3 Genetic Algorithms.

10.4 Application of Differential Evolution to Fitting OSLCurves.

11 Simultaneous TL and Other Types of Measurements.

11.1 Simultaneous TL and TSC Measurements; ExperimentalResults.

11.2 Theoretical Considerations.

11.3 Numerical Analysis of Simultaneous TL-TSC Measurements.

11.4 Thermoluminescence and Optical Absorption.

11.5 Simultaneous Measurements of TL and ESR (EPR).

11.6 Simultaneous Measurements of TL and TSEE.

12 Applications in Medical Physics.

12.1 Introduction.

12.2 Applications of Luminescence Detectors in MedicalPhysics.

12.3 Examples of in-vivo Dosimetric Applications.

12.4 Radioluminescence.

13 Radiophotoluminescence.

13.1 Development and Use of RPL Materials.

13.2 The Simplest RPL Model.

14 Effects of Ionization Density on TL response.

14.1 Modeling TL Supralinearity due to Heavy ChargedParticles.

14.2 Defect Interaction Model.

14.3 The Unified Interaction Model.

15 The Exponential Integral.

15.1 The Integral in TL Theory.

15.2 Asymptotic Series.

15.3 Other Methods.

Previous Books and Review Papers.

Appendix A Examples.

A.1 Simulation of OSL Experiments Using the OTOR Model.

A.2 Simulation of OSL Experiments Using the IMTS Model.

A.3 Simulation of TL Experiment Using the Bailey Model.

References.

Author Index.

Subject Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Thermally and Optically Stimulated Luminescence: A Simulation Approach 4 out of 5 based on 0 ratings. 1 reviews.
Anonymous More than 1 year ago