Pub. Date:
University of California Press
Uncorking the Past: The Quest for Wine, Beer, and Other Alcoholic Beverages / Edition 1

Uncorking the Past: The Quest for Wine, Beer, and Other Alcoholic Beverages / Edition 1

by Patrick E. McGovern
Current price is , Original price is $23.95. You

Temporarily Out of Stock Online

Please check back later for updated availability.


In a lively tour around the world and through the millennia, Uncorking the Past tells the compelling story of humanity's ingenious, intoxicating quest for the perfect drink. Following a tantalizing trail of archaeological, chemical, artistic, and textual clues, Patrick E. McGovern, the leading authority on ancient alcoholic beverages, brings us up to date on what we now know about how humans created and enjoyed fermented beverages across cultures. Along the way, he explores a provocative hypothesis about the integral role such libations have played in human evolution. We discover, for example, that the cereal staples of the modern world were probably domesticated for their potential in making quantities of alcoholic beverages. These include the delectable rice wines of China and Japan, the corn beers of the Americas, and the millet and sorghum drinks of Africa. Humans also learned how to make mead from honey and wine from exotic fruits of all kinds-even from the sweet pulp of the cacao (chocolate) fruit in the New World. The perfect drink, it turns out-whether it be mind-altering, medicinal, a religious symbol, a social lubricant, or artistic inspiration-has not only been a profound force in history, but may be fundamental to the human condition itself.

Product Details

ISBN-13: 9780520267985
Publisher: University of California Press
Publication date: 10/30/2009
Edition description: First Edition
Pages: 352
Sales rank: 768,300
Product dimensions: 5.90(w) x 9.00(h) x 0.80(d)

About the Author

Patrick E. McGovern is Scientific Director of the Biomolecular Archaeology Laboratory for Cuisine, Fermented Beverages, and Health at the University of Pennsylvania Museum. His books include Ancient Wine: The Search for the Origins of Viniculture, the 2004 Grand Prize winner in History, Literature, and Fine Arts, Organisation
Internationale de la Vigne et du Vin. McGovern's research on the origins of alcoholic beverages has been featured in Time, The New York Times, The New Yorker, Nature, and elsewhere.

Read an Excerpt

Uncorking the Past

The Quest for Wine, Beer, and Other Alcoholic Beverages

By Patrick E. McGovern


Copyright © 2009 The Regents of the University of California
All rights reserved.
ISBN: 978-0-520-94468-8



I Drink, Therefore I Am

ASTRONOMERS PROBING OUR GALAXY WITH powerful radio waves have discovered that alcohol does not exist only on the Earth. Massive clouds of methanol, ethanol, and vinyl ethanol—measuring billions of kilometers across—have been located in interstellar space and surrounding new star systems. One cloud, denoted Sagittarius B2N, is located near the center of the Milky Way, some 26,000 light-years or 150 quadrillion miles away from the Earth. While the distant location ensures that humans will not be exploiting extraterrestrial ethanol any time soon, the magnitude of this phenomenon has excited speculation about how the complex carbon molecules of life on Earth were first formed.

Scientists hypothesize that the vinyl ethanol molecules in particular, with their more chemically reactive double bonds, might have been held in place on interstellar dust particles. As in making a vinyl plastic, one vinyl ethanol molecule would couple to another, gradually building up ever more complex organic compounds that are the stuff of life. Dust particles, with their loads of these new carbon polymers, might have been transported through the universe in the icy heads of comets. At high velocities, the ice would melt, releasing the dust to seed a planet like Earth with a kind of organic soup, out of which primitive life forms emerged. It is a gigantic leap from the formation of ethanol to the evolution of the intricate biochemical machinery of the simplest bacteria, not to mention the human organism. But as we peer into the night sky, we might ask why there is an alcoholic haze at the center of our galaxy, and what role alcohol played in jump-starting and sustaining life on our planet.


If alcohol permeates our galaxy and universe, it should come as no surprise that sugar fermentation (or glycolysis) is thought to be the earliest form of energy production used by life on Earth. Some four billion years ago, primitive single-celled microbes are hypothesized to have dined on simple sugars in the primordial soup and excreted ethanol and carbon dioxide. A kind of carbonated alcoholic beverage would thus have been available right from the beginning.

Today, two species of single-celled yeasts (Saccharomyces cerevisiae and S. bayanus), encompassing a large group of wild and domesticated strains, carry on in this grand tradition and serve as the workhorses that produce the alcohol in fermented beverages around the world. Although hardly primitive—they have most of the same specialized organelles as multicellular plants and animals, including a central nucleus which contains the chromosomal DNA—these yeast thrive in oxygen-free environments, such as we imagine existed on Earth when life began.

If we accept this scenario, then the alcohol generated by these first organisms must have been wafting across the planet for millennia. It and other short-chained carbon compounds eventually came to signal the presence of a convenient, high-energy sugar resource. The pungent, enticing aroma of alcohol announced to later sugar-loving animals of the world, ranging from fruit flies to elephants, where the banquet was to be found. When fruit-bearing trees appeared around 100 million years ago (mya), during the Cretaceous period, they offered an abundance of both sugar and alcohol. The sweet liquid that oozes out of ruptured, ripened fruit provides the ideal combination of water and nutrients that allows yeast to multiply and convert the sugar into alcohol.

Animals became superbly adept at exploiting the sugary cocktail of fruit trees, which in turn benefited from the animals' dispersal of their seed. The close symbiosis between a tree and the animals that pollinate its flowers, eat its fruit, and carry out a host of other mutually advantageous functions is astonishing. Take the fig tree, with some eight hundred species spread throughout the world. These trees do not bloom in the conventional sense: instead, they have male and female inflorescences that are tightly encased in a succulent-tasting sac called the syconium, and they cannot be pollinated directly because they flower at different times on the same tree. A species of wasp unique to each fig species must carry out this task. The female adult wasp bores through the tip of the syconium, ruining her wings and eventually dying. She lives long enough, however, to deposit her eggs and transfer the pollen from another tree to the female flowers. When the wasp eggs hatch, the wingless male, trapped within the syconium and eventually dying there, impregnates the female and chomps an opening with his powerful jaws for her to escape with another load of eggs. Sustained by sucking alcoholic nectar through her long, strawlike proboscis from the deep corollas of the fig flowers, she goes on to pollinate another fig tree.

While the fig wasps carry on with their secret sex life, air flowing into the hole created by the escaping female causes the syconium to ripen into the fig "fruit." The yeast goes to work and generates the alcoholic fragrances that alert animals to the potential feast. As many as one hundred thousand figs on a large tree can be devoured by birds, bats, monkeys, pigs, and even dragonflies and geckos in a feeding frenzy.

The fig tree illustrates the intricacy and specificity of the web of life. Other plant sugars, such as evergreen saps and flower nectars, have their own stories to tell. A much sought-after and luscious honey in Turkey, for example, is made from pine honeydew. This is a sugar-rich secretion produced by a scale insect, Marchalina hellenica, which lives in cracks in the bark of the red pine tree (Pinus brutia) and feeds exclusively on the resinous sap. Bees collect the honeydew, and with a specific enzyme, invertase, break down its sugar (sucrose) into simpler glucose and fructose. The final product, honey, is the most concentrated simple sugar source in nature, with the specific plant species from which it derives, red pine in this instance, contributing special flavors and aromas.

Entomologists have exploited insects' taste for fermented beverages by smearing the substances on the bases of trees in order to capture them. Charles Darwin employed a similar tactic: when he set out a bowl of beer at night, a tribe of African baboons were lured in and were easily gathered up as specimens the next morning in their inebriated state. Intemperate slugs—mollusks lacking shells—are less fortunate, as they self-indulgently drown in beer traps. In one carefully constructed set of experiments, it was shown that common fruit flies (Drosophila melanogaster) lay their eggs where there are intense odors of ethanol and acetaldehyde, another by-product of alcohol metabolism. The fermenting fruit guarantees that their larvae will be well-fed with sugar and high-protein yeast, as well as alcohol, for which they have highly efficient energy pathways.

Nature's hidden rationale and complex ecological interplay centered on sugar and alcohol resources can have a seriocomic side. Elephants, which consume fifty thousand calories a day, sometimes overindulge in their consumption of fermenting fruit. They can perhaps be excused, as they work hard for their pleasure: they have to remember where to find the trees and travel many miles to reach them at the time of ripening. Unfortunately, they also have a weakness for the human-produced equivalent. In 1985, about 150 elephants forced their way into a moonshine operation in West Bengal, ate all the sweet mash, and then rampaged across the country, trampling five people to death and knocking down seven concrete buildings. This episode highlights problem drinking in higher mammals, including humans.

Birds are also known to gorge themselves on fermenting fruit. Cedar waxwings feasting on hawthorn fruit have suffered ethanol poisoning and even death. Robins fall off their perches. Maturing fruits concentrate sugar, flavor and aroma compounds, and colorants that announce to birds and mammals that they are ripe for eating. As the fruit passes its prime, however, it becomes the target of a host of microorganisms, including yeasts and bacteria, that can threaten the plants. Ominously, the plants defend themselves by generating poisonous compounds. The manufactured plant toxins, including alkaloids and terpenoids, inhibit the growth of virulent microorganisms, as well as fending off noxious insects. A placid-l ooking apple orchard or idyllic vineyard may not look like a battleground, but a host of creatures are vying for supremacy and defining the balance of power through chemical compounds.

Sometimes, one creature unwittingly steps on a chemical landmine intended for another. If alcohol is dangerous when consumed in excess, plant toxins can be lethal. In one well-documented incident near Walnut Creek, California, thousands of robins and cedar waxwings apparently found the scarlet, mildly sweet berries of holly (Ilex spp.) and firethorn bush (Pyracantha) too good to pass up. Over a three-week period, the birds overdosed on the berries and their toxins and began crashing into cars and windows. Autopsies revealed that their gullets were bursting with the fruit. (By contrast, the normal, demure courtship behavior of cedar waxwings involves passing a single berry back and forth between the male and female until the gift is finally accepted and the pair copulate.)

As with the West Bengal elephants, the California birds' drunken behavior was due to the excessive consumption of a mind-altering compound. Intriguingly, the compounds in holly berries—caffeine and theobromine—are the same ones humans enjoy today in coffee, tea, and chocolate. Native Americans in the woodlands of the north and the jungles of Amazonia also showed their appreciation for these substances: Spanish colonists observed that they brewed up a bitter but aromatic "black drink" by steeping toasted holly leaves in hot water.


Just as a plant will defend its territory with a chemical arsenal, the invisible world of microorganisms engages in a similar struggle for supremacy and survival. A finely tuned enzymatic system and the production of alcohol are the weapons of choice for S. cerevisiae, the principal yeast used by humans in making alcoholic beverages. About the same time that fruit trees were proliferating around the globe, S. cerevisiae appears to have acquired an extra copy of its entire genome. Further rearrangements enabled it to proliferate in the absence of oxygen, and the alcohol it produced destroyed much of its competition. Other microorganisms, including many spoilage-and disease-causing yeasts and bacteria, simply cannot tolerate alcohol in concentrations above 5 percent, but S. cerevisiae survives in fermenting substances with more than twice this concentration of alcohol.

The yeast pays a cost for its success. In producing more alcohol, it forgoes making more of the compound adenosine triphosphate (ATP), which provides living organisms with the energy for essential biological processes. Pure aerobic metabolism yields thirty-six molecules of ATP from glucose. S. cerevisiae makes only two molecules of ATP in air, channeling the rest of the glucose into the production of alcohol to be deployed against its competitors.

S. cerevisiae's apparent loss later becomes its gain. Because of the doubling of its genome, each yeast cell develops two versions of the gene that controls the production of alcohol dehydrogenase (ADH). This enzyme converts acetaldehyde, an end product of glycolysis, into alcohol. One version of the enzyme (ADHi) reliably processes sugar into alcohol in an oxygen-free environment, whereas the other (ADH2) is activated only after most of the sugar has been consumed and oxygen levels start to rise again. For S. cerevisiae, this happens after many competing microbes have been destroyed. Then ADH2 springs into action, converting alcohol back into acetaldehyde and ultimately generating more ATP. Of course, other microorganisms, such as acetic acid-producing bacteria, which can tolerate high alcohol levels, wait in the wings. They are ready to turn any remaining alcohol into vinegar unless another hungry organism acts faster or is able, like a human, to improvise a way to preserve the alcohol.

It is still a mystery why varieties of S. cerevisiae live on the skins of certain fruits, especially grapes, or in honey, where they are able to tolerate high sugar levels. This yeast is not airborne but can take up residence in special microclimates, like the breweries around Brussels, with their lambic beers, or the rice-wine factories of Shaoxing in China (see chapter 2): both beverages are fermented without intentionally adding yeast. The yeast apparently lives in the rafters of the old buildings, from where it falls into the brew; when the rafters have been covered during renovations, brewers have been unable to start their fermentations. The yeast most likely was carried there by insects, especially bees and wasps, who inadvertently picked it up when they fed on the sweet juice oozing out of damaged fruit, and were drawn to the buildings by the aromas of the sweet worts and juices or musts.


Our world is awash in ethanol. In 2003, some 150 billion liters of beer, 27 billion liters of wine, and 2 billion liters of distilled spirits (mainly vodka) were produced worldwide. This amounts to about 8 billion liters of pure alcohol, representing about 20 percent of the world's total ethanol production of 40 billion liters. Now that alternative energy sources are a priority, fuel ethanol, made mainly from sugar cane and corn, accounts for the lion's share (70 percent in 2003, and more today). The industrial sector of chemicals and pharmaceuticals produces the remaining 10 percent. For the foreseeable future, the fuel sector will probably continue to expand, while the production of alcoholic beverages will show only modest gains to keep pace with the world's population. The world's total annual production of pure alcohol for beverages now exceeds 15 billion liters and is projected to reach 20 billion liters by 2012.

Fifteen billion liters of pure alcohol in naturally fermented and distilled beverages would provide every man, woman, and child on Earth with more than two liters a year. This estimate is likely too low, as illegal production is widespread and traditional home-brewed beverages, consumed globally in great quantities, are not included. Considering that most fermented beverages have an alcohol content of 5 to 10 percent and children generally do not imbibe, there is obviously plenty of alcohol to go around.

How has it come about that humans everywhere drink so much alcohol? Practically speaking, alcoholic beverages supply some of the water that we need to survive. Our bodies are two-thirds water, and the average adult needs to drink about two liters daily to stay hydrated and functioning. Untreated water supplies, however, can be infected with harmful microorganisms and parasites. Alcohol kills many of these pathogens, and humans must have recognized at an early date that those who drank alcohol were generally healthier than others.

Alcoholic beverages have other advantages. Alcohol spurs the appetite, and in liquid form, it also satiates feelings of hunger. The process of fermentation enhances the protein, vitamin, and nutritional content of the natural product, adds flavor and aroma, and contributes to preservation. Fermented foods and beverages cook faster because complex molecules have been broken down, saving time and fuel. Finally, as we have learned from numerous medical studies, moderate consumption of alcohol lowers cardiovascular and cancer risks. People consequently live longer and reproduce more. This was crucially important in antiquity, when life spans were generally short.


Excerpted from Uncorking the Past by Patrick E. McGovern. Copyright © 2009 The Regents of the University of California. Excerpted by permission of UNIVERSITY OF CALIFORNIA PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

List of Illustrations

1. Homo Imbibens: I Drink, Therefore I Am
2. Along the Banks of the Yellow River
3. The Near Eastern Challenge
4. Following the Silk Road
5. European Bogs, Grogs, Burials, and Binges
6. Sailing the Wine-Dark Mediterranean
7. The Sweet, the Bitter, and the Aromatic in the New World
8. Africa Serves Up Its Meads, Wines, and Beers
9. Alcoholic Beverages: Whence and Whither?

Select Bibliography


What People are Saying About This

From the Publisher

"McGovern's delving, detailed in this fascinating book, leaves little doubt that humans are born drinkers."—New Scientist

"(A) magnificent study, skillfully written and well illustrated."—Choice

"Takes his reader on a world tour, examining the archeological record for alcohol use across continents and cultures."—Nature

"Highly informative and challenging."—California Grapevine

"A remarkable book, both erudite and entertaining."—Gastronomica

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Uncorking the Past: The Quest for Wine, Beer, and Other Alcoholic Beverages 4 out of 5 based on 0 ratings. 1 reviews.
JonathanGorman on LibraryThing More than 1 year ago
This seemed better organized than his previous book Ancient Wine and I'd recommend skipping over Ancient Wine and just reading this unless you're a huge wine buff. Parts of Ancient Wine were touched on, but there's a much broader and more interesting scope of this book. The parts on the New World ancient fermentation techniques in particular fired up my imagination.McGovern sometimes has the habit of jumping to conclusions a little, but his mentions of the science behind the discovery is interesting and informative.