Univalent Functions: A Primer / Edition 1

Univalent Functions: A Primer / Edition 1

ISBN-10:
3110560097
ISBN-13:
9783110560091
Pub. Date:
04/09/2018
Publisher:
De Gruyter
ISBN-10:
3110560097
ISBN-13:
9783110560091
Pub. Date:
04/09/2018
Publisher:
De Gruyter
Univalent Functions: A Primer / Edition 1

Univalent Functions: A Primer / Edition 1

$145.99
Current price is , Original price is $145.99. You
$145.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of univalent functions, with an emphasis on the important subclasses, thus providing an accessible resource suitable for both beginning and experienced researchers.

Contents
Univalent Functions – the Elementary Theory
Definitions of Major Subclasses
Fundamental Lemmas
Starlike and Convex Functions
Starlike and Convex Functions of Order α
Strongly Starlike and Convex Functions
Alpha-Convex Functions
Gamma-Starlike Functions
Close-to-Convex Functions
Bazilevič Functions
B1(α) Bazilevič Functions
The Class U(λ)
Convolutions
Meromorphic Univalent Functions
Loewner Theory
Other Topics
Open Problems


Product Details

ISBN-13: 9783110560091
Publisher: De Gruyter
Publication date: 04/09/2018
Series: De Gruyter Studies in Mathematics , #69
Pages: 265
Product dimensions: 6.69(w) x 9.45(h) x (d)
Age Range: 18 Years

About the Author

D. K. Thomas, Swansea Univ., UK; N. Tuneski, Ss. Cyril and Methodius Univ. in Skopje, Macedonia; A. Vasudevarao, IIT Khagapur, India

Table of Contents

Preface v

List of Symbols xi

1 Univalent Functions - the Elementary Theory 1

1.1 Definitions and Basic Properties 1

1.2 Bieberbach's Conjecture and Related Topics 3

1.3 Growth and Distortion Theorems 8

2 Definitions of Major Subclasses 13

2.1 Convex and Starlike Functions 13

2.2 Close-to-Convex Functions 16

23 Bazilevic Functions 18

2.4 The Class U 20

2.5 Rotational Invariance 20

3 Fundamental Lemmas 22

3.1 Functions with Positive Real Part 22

3.2 Subordination 31

3.3 The Clunie-Jack Lemma 35

4 Starlike and Convex Functions 37

4.1 Starlike Functions 37

4.1.1 Coefficient Theorems 37

4.1.2 Refined Growth Theorems 42

4.13 Theorems Concerning lim $$$ arg f(re) 45

4.1.4 The Radial Limit lim $$$ f(re) 47

4.1.5 Length and Integral Mean Problems 50

4.1.6 Some Subclasses of Starlike Functions 54

4.2 Convex Functions 58

4.2.1 Growth and Distortion Theorems 59

4.2.2 Coefficient Inequalities 60

5 Starlike and Convex Functions of Order α 65

5.1 Definitions and Growth and Distortion Theorems 65

5.2 Inclusion Relationships 67

5.3 Coefficient Theorems 75

5.4 Sufficient Conditions 78

5.4.1 Sufficient Conditions on ″ (z) 78

5.4.2 On a Class Defined by Silverman 81

6 Strongly Starlike and Convex Functions 83

6.1 Definitions 83

6.2 Strongly Starlike Functions 83

6.3 Coefficient Theorems 87

6.4 Strongly Convex Functions 93

6.5 Inclusion Relationships 95

7 Alpha-Convex Functions 99

7.1 Definition and Integral Representation 99

7.2 Distortion and Growth Theorems 101

7.3 Coefficient Problems 106

8 Gamma-Starlike Functions 112

8.1 Definition and Basic Properties 112

8.2 Coefficient Inequalities 113

8.2.1 Logarithmic Coefficients 116

8.2.2 Inverse Coefficients 118

8.2.3 The Second Hankel Determinant 119

9 Close-to-Convex Functions 121

9.1 Definitions and Basic Properties 121

9.2 Distortion Theorems 124

9.3 Coefficient Problems 125

9.3.1 The Fekete-Szego Problem 125

9.3.2 The Zalcman Conjecture 127

9.3.3 Difference of Coefficients 132

9.3.4 Robertson's Conjecture 134

9.3.5 Logarithmic Coefficients 136

9.3.6 The Second Hankel Determinant 143

9.4 Growth Estimates 143

9.5 Ozaki Close-to-Convex functions 149

9.5.1 Growth and Area Estimates 151

9.5.2 Strongly Ozaki Close-to-Convex Functions 151

10 Bazilevic Functions 153

10.1 Definition and Basic Properties 153

10.2 Growth Theorems 154

10.2.1 Coefficients of Powers of Functions in B(α) 159

10.2.2 Logarithmic Coefficients 162

10.3 The Fekete-Szego Problem 162

10.4 Sufficient Conditions for f ∈ B(α) 163

11 B1 (α) Bazilevic Functions 165

11.1 Definition and Basic Properties 165

11.2 Distortion Theorems 165

11.3 Growth Estimates 169

11.4 Coefficients 171

11.5 Other Inequalities 174

12 The Class U(λ) 179

12.1 Definition and Geometrical Properties 179

12.2 Sufficient Conditions and Univalence 182

12.3 Coefficients 188

13 Convolutions 195

13.1 Definition and the Pólya-Schoenberg Conjecture 195

13.2 Subordination and Convolution 201

14 Meromorphic Univalent Functions 205

14.1 The Class ∑ 205

14.1.1 Coefficients and the Clunie Constant 205

14.1.2 Coefficients of the Inverse Function 209

14.1.3 Distortion Theorems 209

14.2 Subclasses of ∑ 210

14.2.1 Meromorphic Starlike Functions 210

14.2.2 Meromorphic Close-to-Convex Functions 211

14.2.3 Meromorphic Bazilevic Functions 213

15 Loewner Theory 215

15.1 The Loewner Equation 215

15.2 Applications 216

16 Other Topics 224

16.1 Harmonic Univalent Functions 224

16.2 Bi-univalent Functions 225

16.3 Functions of Bounded Boundary Rotation 226

16.4 Differential Subordinations 229

16.5 Operators 230

16.5.1 The Salagean Operator 230

16.5.2 The Libera Operator and Generalizations 232

17 Open Problems 235

Concluding Remarks 238

Bibliography 239

Index 250

From the B&N Reads Blog

Customer Reviews