The Science of Philip Pullman's His Dark Materials

( 5 )

Overview

Philip Pullman?s His Dark Materials trilogy is renowned for its mystery and magic. What?s the truth behind it all? Is the golden compass actually based in science? How does the subtle knife cut through anything? Could there be a bomb like the one made with Lyra?s hair? How do the Gallivespians? lodestone resonators really work? And, of course, what are the Dark Materials? Drawing on string theory and spacetime, quantum physics and chaos theory, award-winning science writers Mary and John Gribbin reveal the real ...
See more details below
Paperback (Mass Market Paperback - Reprint)
$6.29
BN.com price
(Save 10%)$6.99 List Price
Other sellers (Paperback)
  • All (30) from $1.99   
  • New (7) from $3.48   
  • Used (23) from $1.99   
Science of Philip Pullman's His Dark Materials

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$6.99
BN.com price
Note: Visit our Teens Store.

Overview

Philip Pullman’s His Dark Materials trilogy is renowned for its mystery and magic. What’s the truth behind it all? Is the golden compass actually based in science? How does the subtle knife cut through anything? Could there be a bomb like the one made with Lyra’s hair? How do the Gallivespians’ lodestone resonators really work? And, of course, what are the Dark Materials? Drawing on string theory and spacetime, quantum physics and chaos theory, award-winning science writers Mary and John Gribbin reveal the real science behind Philip Pullman’s bestselling fantasy trilogy in entertaining and crystal-clear prose.

From the Hardcover edition.

Read More Show Less

Editorial Reviews

From the Publisher
“Be prepared to be truly amazed and fascinated.” –Full On!
“It’s brilliant fun, even if you’ve not yet entered the best-selling universe of Philip Pullman.”–RTE

From the Hardcover edition.

Publishers Weekly
Readers who were fascinated by the inner workings of the Golden Compass, the nature of Dust and whether or not there truly are "hidden dimensions," introduced in the trilogy that began with The Golden Compass, may wish to delve into The Science of Philip Pullman's His Dark Materials by Mary and John Gribbin, with an introduction by Pullman himself. The authors open with a quote from the books and segue into a discussion of the scientific underpinnings of some of the trilogy's themes. Copyright 2005 Reed Business Information.
School Library Journal
Gr 5-9-The Gribbins are fairly successful at relating various aspects of the worlds of Pullman's series to scientific principles of our world. The discussion is less than scientific at some points. The authors relate the use of The Golden Compass to the unconscious mind and, in so doing, describe both the theories of Jung and the use of the I Ching. At other times, their science is on solid ground, even cutting edge, as in their discussion of quantum entanglement, but their comparison of this scientific principle to Will and Lyra's sharing the same Oxford park bench in different worlds is tenuous at best. The book is organized roughly by the chronology of the trilogy so readers must jump from one concept to another quite disparate idea within a few pages. Overall, though, the Gribbins introduce quite a few interesting topics ranging from cosmology to natural selection in an understandable and readable manner. This book could be used to introduce scientifically inclined readers to Pullman's works and Pullman's fans to the wonders of science.-Eric Norton, McMillan Memorial Library, Wisconsin Rapids, WI Copyright 2005 Reed Business Information.
Kirkus Reviews
Bobbing along in the wake of Roger Highfield's Science of Harry Potter (2002), this less-wide-ranging commentary uses select ideas and gadgets from Pullman's epic as springboards for discussions of Newtonian and quantum physics, dark matter, magnetism, multiple universes, chaos theory and a few other topics on science's frontiers. Though the Gribbins tuck in frequent references to the novels-pairing Schrodinger's Cat to a nameless one in Subtle Knife, for instance-and even open each chapter with relevant passages, their focus is less on the stories, or on critiquing Pullman's grasp of science (which turns out to be a pretty firm one, as Pullman himself points out in his introduction), than in showing how modern researchers are winkling out the universe's "hidden truths," a bit at a time. The authors' implication of a link between the quantum "entanglement" of photons and Jung's Collective Unconscious is a bit of a stretch, but the buoyant prose and coherent, non-technical explanations will keep readers on board for the entire trip. (Nonfiction. 12+)
Read More Show Less

Product Details

  • ISBN-13: 9780375831461
  • Publisher: Random House Children's Books
  • Publication date: 7/10/2007
  • Format: Mass Market Paperback
  • Edition description: Reprint
  • Pages: 224
  • Age range: 8 - 12 Years
  • Product dimensions: 4.23 (w) x 6.87 (h) x 0.62 (d)

Meet the Author

Mary and John Gribbin are award-winning science writers for both adults and children whose books include Eyewitness: Time & Space. John Gribbin has a PhD in Astrophysics from the University of Cambridge and is a Research Fellow in Astronomy at the University of Sussex. The Gribbins live on the Sussex coast in England with two sons, one dog, one cat.

From the Hardcover edition.

Read More Show Less

Read an Excerpt

CHAPTER ONE

BRIGHT MATERIALS

The secret of science, and all the stars that shine

''She walks in beauty, like the night
Of cloudless climes and starry skies;
And all that's best of dark and bright
Meet in her aspect and her eyes:
Thus mellowed to that tender light
Which heaven to gaudy day denies.''
LORD BYRON

...her knowledge was patchy. She knew about atoms and elementary particles, and anbaromagnetic charges and the four fundamental forces and other bits and pieces of experimental theology, but nothing about the solar system. In fact, when Mrs. Coulter realized this and explained how the earth and the other five planets revolved around the sun, Lyra laughed loudly at the joke.
However, she was keen to show that she did know some things, and when Mrs. Coulter was telling her about electrons, she said expertly, "Yes, they're negatively charged particles. Sort of like Dust, except that Dust isn't charged."
Science is explainable magic. If you were a time traveler visiting our world from the ancient past, you would think that magic was everywhere around you. Planes flying, cars moving, even frozen food would seem strange and miraculous. They are not strange magic to us because we are used to them and because we know they work by science, not magic. In ancient times, people were amazed and awed by things like rainbows and eclipses, things they had no control over. We still can't control these things, but we aren't scared of them, because we understand the science behind them.
In Philip Pullman's His Dark Materials trilogy, when Lyra visits Will's world, things like cars seem magical to her. And in Lyra's world there are things, like the alethiometer, and Dust, that seem like magic to Will. But even these things are really based on science. We are going to tell you about that science, the science of His Dark Materials. The story is all about uncovering hidden truth. The truly big magic that Philip Pullman weaves into his story is the magic that understanding things and knowing how the world works makes it less scary. He shows us that knowledge and science put you more in control of things.
This means more than understanding how a frozen pizza is made. Understanding frozen pizza is pretty smart, but the understanding behind His Dark Materials involves the whole Universe. That's where the "Dark Materials" come from. We're not talking here about the kind of material used to make a shirt or a curtain, but much more mysterious stuff, a kind of invisible matter that fills the Universe.
The worlds inhabited by Lyra, Will, and the other characters are embedded in a sea of Dust, which falls on them from space, and is real, but cannot be seen by human eyes. The characters, especially Lyra and Will, are also surrounded by a sea of knowledge. There is information about the world that they know nothing about when the story begins, but that they learn about, with the help of the alethiometer, as their adventure unfolds.
Both these images are true. Knowledge really does make the world a better place to live in. And astronomers really do have evidence that there is about ten times as much dark stuff in our Universe as there are bright stars and galaxies. Just like Dust, this dark material is not like anything ever detected on Earth. It isn't made of the kind of atoms and molecules your body is made of, or the air you breathe, or anything you have ever touched or seen. But, like Lyra, we have to know about things like atoms and electrons before we can learn about the dark materials in the Universe. And, unlike Lyra, we know a great deal about what goes on in space--not just in our Solar System, where there are actually nine planets, not six, but in the stars and galaxies beyond the planets.
THE STUFF OF THE UNIVERSE
What are atoms? Atoms are tiny particles that move around all the time, bouncing off one another and sometimes sticking together to make molecules. The discovery of atoms is the most important discovery in the whole of science. There are approximately two and a half centimeters in one inch, and an atom is only about one hundred-millionth of a centimeter across, so it would take ten million atoms side by side to stretch across the gap between two of the "teeth" on the jagged edge of a postage stamp. The oxygen molecules that you breathe in to stay alive are made of two oxygen atoms joined together. They don't just waft around gently in the air waiting for you to come along and breathe them in. When it comes to speed, they can go 50 times faster than the fastest 100-yard sprinter, and they never stop for a rest.
Oxygen molecules in the air move at about one-third of a mile per second. If they went in a straight line, they could cover more than 18 miles in a minute. But they never get a chance to go far, because they are always bouncing off other molecules in the air. The average distance they travel between collisions is just five millionths of an inch. They are so close together that they collide with other molecules three and a half billion times every second. That makes 210 billion collisions every minute. Feel free to work out how many that is in a day, a week, a century....
Atoms come in different varieties, corresponding to different kinds of material called elements. There are 92 different elements (things like oxygen, gold, or the silicon used in computer chips) that occur naturally on Earth. Because each variety of element corresponds to a different variety of atom, this means there are 92 different kinds of atoms. Everything we experience in our everyday lives is thanks to these 92 kinds of atoms interacting with each other in different ways. All the stuff around you, everywhere in the Universe, that is made of atoms is called baryonic matter.
THE LIGHT THAT SHINES
When atoms get hot, they radiate energy in the form of light--they shine. The white light that surrounds you in daylight is made of all the colors of the rainbow mixed together. In a rainbow, the colors are spread out to make a spectrum. You can do the same thing by shining light through a triangle of glass, called a prism, to make a spectrum. If you hang a prism in a window on a sunny day, it makes rainbow patterns that dance on the walls. The rainbow pattern is made because the light gets bent when it goes through the prism. Different colors are bent by slightly different amounts, so the colors get spread out. The same thing happens in raindrops to make rainbows. Raindrops are like tiny prisms.
One of the great discoveries of science in the nineteenth century was that each kind of atom shines in a particular way, making its own contribution to the rainbow spectrum of light. This role of the atom is an example of a hidden truth.
All the colors of the rainbow are made by light from shining atoms. Sodium atoms shine very brightly with yellow light. Sodium atoms in the gas in streetlights get their energy from electricity and turn it into yellow light. Every time you see that sort of yellow light, you know sodium is there, even if you can't touch it. If you ever see someone throw ordinary salt into a fire, you see a flash of the same "street lamp" yellow light. That is because salt molecules are made of sodium atoms joined to chlorine atoms (the chemical name for salt is sodium chloride).
BEYOND THE RAINBOW
On Earth, chemists can study the light from every kind of atom and measure the exact color it contributes to the spectrum. A little piece of magic turned into science. Astronomers can take this magic out into space. They measure the strength of light of different colors coming from the Sun and the stars, so they can work out what the stars are made of without ever going into space. That would have seemed like magic even a couple of hundred years ago. We actually know what the stars are made of, even though they are so far away that the light from them takes hundreds or thousands of years to get to us.
The scientific magic of the spectrum shows that all the stars--everything we can see in the Universe--are made of the same kind of atoms that we are made of. It is all baryonic matter.
STARS LIKE DUST
The Sun looks big and bright to us, and we see it in daylight, not at night. But it is an ordinary star. It is about 109 times bigger across than the Earth is and contains about 330,000 times as much material as the Earth does. It shines because, deep inside the Sun, one kind of atom (hydrogen) is being turned into another kind of atom (helium). This process is called nuclear fusion. When light atoms fuse together, they release energy. All stars shine in the same way.
The Sun looks very bright to us because it is quite close, in cosmic terms. The Earth orbits around the Sun once every year, at a distance of about 93 million miles. That's very nearly 400 times farther away from us than the Moon. But it's just next door in the Cosmos.
Other stars are just as bright as the Sun. Some of them are even brighter. But even extra-bright stars look faint to us because they are so far away. If you stood near a huge bonfire, it would look big and bright. But if you stood on a hill a few miles away and looked down on the bonfire, it would look like a tiny flickering flame. It's the same with stars, but the distances are much more than a few miles. Even stars that are quite close to us by cosmic standards are hundreds of thousands of times farther away than the Sun. And there are thousands and thousands of stars so far away that they are too faint to see at all without a telescope.
On a dark, moonless night, far from the city lights, you can see a white band of light across the sky. This is called the Milky Way. Telescopes show that the Milky Way is made up of millions and millions of stars, like a band of white dust scattered across the sky. The Sun is one of the stars of the Milky Way Galaxy. This Milky Way Galaxy is a disk of stars, shaped a bit like a huge fried egg, so big that it would take a beam of light 100,000 years to travel from one side to the other, even though light travels at 186,000 miles a second, or six trillion miles in a year. This huge distance is called a light- year. If you were as near to one of these stars as we are to the Sun, it would look as big and bright as the Sun. There are hundreds of billions of stars like the Sun in the Milky Way Galaxy.
UNIVERSES BEYOND THE UNIVERSE
But this is not the end of the story. Until the 1920s, astronomers thought that the Milky Way Galaxy was the entire Universe, everything that there is. That's less than 100 years ago. Since then, bigger and better telescopes have made it possible to look farther and farther into the Cosmos. Astronomers found that there are other galaxies, like islands in the sea of space, beyond the Milky Way. In a way, they are like other universes. But they are not the kind of other universes that Philip Pullman writes about.
The light from these galaxies tells us that they are made of ordinary stars and ordinary atoms just like the ones on Earth and in the Sun. Our Milky Way is an average-sized galaxy. Beyond the Milky Way, the Cosmos contains hundreds of billions of galaxies, each containing hundreds of billions of stars. All this bright stuff, in every star in every galaxy, is baryonic matter--it is all made of atoms. Galaxies so far away that the light we see from them left their stars even before the time of the dinosaurs here on Earth are all made of baryonic matter, just like the matter you are made of and everything you touch is made of.
All this is our kind of magic; the scientific magic of the world we live in. Philip Pullman's "Dark Materials" might seem like a different kind of magic, pure fantasy that he has invented to make a good story. The amazing thing is, though, that these Dark Materials are also part of the scientific magic of our own world. This is such an amazing story that it deserves a chapter to itself.
CHAPTER TWO

DARK MATERIALS

THE HIDDEN WORLD, AND
THE NATURE OF DUST

''There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.''
WILLIAM SHAKESPEARE

"Dark matter is what my research team is looking for. No one knows what it is. There's more stuff out there in the universe than we can see, that's the point. We can see the stars and the galaxies and the things that shine, but for it all to hang together and not fly apart, there needs to be a lot more of it--to make gravity work, you see. But no one can detect it. So there are lots of different research projects trying to find out what it is, and this is one of them."

As Mary Malone explains to Lyra, there's more to the Universe than meets the eye. At one level, the Dark Materials are Dust--something that can't be seen but is really there, in Lyra's world as well as in our own. But this is also a metaphor for another kind of dark material--hidden knowledge, and hidden forces, like Mrs. Coulter and the General Oblation Board carrying out their plans in secret. And even they don't know what is really going on at a deeper level still. It's like those sets of Russian dolls with one doll inside another, inside another, and so on, right down to a tiny little doll in the middle.
Our Universe is a bit like that. When astronomers started looking at the sky and studying stars and galaxies with their telescopes, they thought that all this bright stuff was all that really mattered. But in the second half of the twentieth century, less than 50 years ago, they found out that they were wrong. They found out that there is ten times more dark matter in the Universe than all the bright stuff put together.
It's like an iceberg. When you see an iceberg floating in the sea, it looks big and white and shiny. But there is actually ten times as much ice underneath the water, hidden in the dark, where you can't see it. This is the idea behind Dust--the Dark Materials of the story. But if you can't see the dark stuff, how do astronomers know that it is there?

Read More Show Less

Table of Contents

Introduction xiii
Chapter 1 Bright Materials: The secret of science, and all the stars that shine 1
The stuff of the Universe
The light that shines
Beyond the rainbow
Stars like dust
Universes beyond the Universe
Chapter 2 Dark Materials: The hidden world, and the nature of Dust 15
Stretching light
Coming to grips with gravity
In the beginning
Stardust
Not stars alone
Dark stuff
Where is dark matter?
From dust to Dust
Chapter 3 Northern Lights: Lights in the sky, and the magnetic web 31
The magic of magnetism
The magnetic Earth
Inside the atom
Behind the Northern Lights
Excited atoms
Exploring the sky
Storms from the sky
Chapter 4 The Golden Compass: The meaning of truth, and the unconscious mind 53
Consulting the oracle
Consulting the Sherlock
The science of truth-telling
The Book of Changes
Consulting the I Ching
Good news and bad news
It's all in the mind
Freud and Jung
Memories from ancient days
Is Dust conscious?
The magic of science
Chapter 5 Other Worlds: Worlds beyond the world, and the quantum cat 77
In search of the quantum world
Stranger than fiction
In with a chance
Watch what you're doing
Confused atoms
Collapsing cats
Many Worlds
Making worlds
Chapter 6 The Subtle Knife: Hidden dimensions, and how to cut them 97
The string's the thing
How short is a piece of string?
Hidden dimensions
Spectral escapees
Stretching space
Worlds within worlds
Chapter 7 The Worlds of If: The power of choice, and a balancing act 113
In the balance
Weather, or not
Worlds within worlds
Tilting the scales
Making your mind up
When worlds diverge
Infinite possibilities
Chapter 8 Living Together: The nature of wheels, hummingbirds, and the living planet 131
A strange partnership
The nature of natural selection
Buzzing birds
The birds and the flowers
The rocky road to life
The carbon dioxide pump
The living planet
The soul of Gaia
Chapter 9 The Amber Spyglass: How to see invisible light, and the way scientists work 147
Seeing double
The light fantastic
The doubleness disappears
Light with attitude
Crossed light
Working in the dark
Seeing invisible light
Chapter 10 Entanglement: Love is all you need 165
The slowness of light
Never apart
Riding on light
The proof in the pudding
Putting entanglement to work
The voodoo bomb
The future is now
A bit of information
Lyra & Will
Other Books to Read 187
Glossary 189
Index 197
Read More Show Less

Customer Reviews

Average Rating 4.5
( 5 )
Rating Distribution

5 Star

(4)

4 Star

(0)

3 Star

(1)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 – 8 of 7 Customer Reviews
  • Anonymous

    Posted March 8, 2008

    Hard to read

    i had to do a book report on this book for school and i found this book very difficult to follow and understand. once i read it a third time, however, i was able to complete my project.

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 2, 2011

    No text was provided for this review.

  • Anonymous

    Posted December 26, 2009

    No text was provided for this review.

  • Anonymous

    Posted November 17, 2008

    No text was provided for this review.

  • Anonymous

    Posted August 23, 2009

    No text was provided for this review.

  • Anonymous

    Posted January 15, 2009

    No text was provided for this review.

  • Anonymous

    Posted January 17, 2010

    No text was provided for this review.

  • Anonymous

    Posted June 10, 2011

    No text was provided for this review.

Sort by: Showing 1 – 8 of 7 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)