Visual Thinking: for Design [NOOK Book]

Overview

Increasingly, designers need to present information in ways that aid their audience’s thinking process. Fortunately, results from the relatively new science of human visual perception provide valuable guidance.

In Visual Thinking for Design, Colin Ware takes what we now know about perception, cognition, and attention and transforms it into concrete advice that designers can directly apply. He demonstrates how designs can be considered as ...
See more details below
Visual Thinking: for Design

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$27.49
BN.com price
(Save 42%)$47.95 List Price

Overview

Increasingly, designers need to present information in ways that aid their audience’s thinking process. Fortunately, results from the relatively new science of human visual perception provide valuable guidance.

In Visual Thinking for Design, Colin Ware takes what we now know about perception, cognition, and attention and transforms it into concrete advice that designers can directly apply. He demonstrates how designs can be considered as tools for cognition - extensions of the viewer’s brain in much the same way that a hammer is an extension of the user’s hand.

Experienced professional designers and students alike will learn how to maximize the power of the information tools they design for the people who use them.

• Presents visual thinking as a complex process that can be supported in every stage using specific design techniques.
• Provides practical, task-oriented information for designers and software developers charged with design responsibilities.
• Includes hundreds of examples, many in the form of integrated text and full-color diagrams.
• Steeped in the principles of “active vision,” which views graphic designs as cognitive tools.
Read More Show Less

Editorial Reviews

From the Publisher
“Through a detailed analysis of the mechanics of visual cognition, this book teaches us how to see as designers, by anticipating how others will see our designs. Ware summarizes the thread of inquiry that leads through Goethe, Klee, Arnheim, Gibson and Tufte, sifting it for relevance to the artful science of visualization, and condensing it into one eminently readable volume.” – Fritz Drury, Professor of Illustration, Rhode Island School of Design

“All the clanking gears are here: variable resolution image detection, eye movements, environmental information statistics, bottom-up/top-down control structures, working memory, the nexus of meaning, and specialized brain areas and pathways. By the time he’s done, Ware has reconstructed cognitive psychology, perception, information visualization, and design into an integrated modern form. This book is scary good.” - Stuart Card, Senior Research Fellow, and manager of the User Interface Research group at the Palo Alto Research Center

"In this fascinating new book, seasoned professionals, educators and students alike will find that Colin Ware has written an incredibly accessible text that translates years of scientific research into concrete design applications. In a clear and effective manner, Ware provides a comprehensive introduction to the interrelationships among the physiological and cognitive components through which humans process and understand the visual world. This scientific perspective for graphic design provides an additional dimension for discussing the reasoning behind design choices while remaining adaptable to the shifting contexts in which these choices occur." -Paul Catanese. Assistant Professor of New Media, San Francisco State University

Read More Show Less

Product Details

  • ISBN-13: 9780080558417
  • Publisher: Elsevier Science
  • Publication date: 7/27/2010
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 256
  • File size: 6 MB

Meet the Author

The author takes the "visual" in visualization very seriously. Colin Ware has advanced degrees in both computer science (MMath, Waterloo) and the psychology of perception (Ph.D., Toronto). He has published over a hundred articles in scientific and technical journals and at leading conferences, many of which relate to the use of color, texture, motion, and 3D in information visualization. In addition to his research, Professor Ware also builds useful visualization software systems. He has been involved in developing 3D interactive visualization systems for ocean mapping for over twelve years, and he directed the development of the NestedVision3D system for visualizing very large networks of information. Both of these projects led to commercial spin-offs. Professor. Ware recently moved from the University of New Brunswick in Canada to direct the Data Visualization Research Laboratory at the University of New Hampshire.
Read More Show Less

Read an Excerpt

Visual Thinking

For Design
By Colin Ware

MORGAN KAUFMANN PUBLISHERS

Copyright © 2008 Elsevier Inc.
All right reserved.

ISBN: 978-0-08-055841-7


Chapter One

Visual Queries

When we are awake, with our eyes open, we have the impression that we see the world vividly, completely, and in detail. But this impression is dead wrong. As scientists have devised increasingly elaborate tests to find out what is stored in the brain about the state of the visual world at any instant, the same answer has come back again and again—at any given instant, we apprehend only a tiny amount of the information in our surroundings, but it is usually just the right information to carry us through the task of the moment.

We cannot even remember new faces unless we are specifically paying attention. Consider the following remarkable "real world" experiment carried out by psychologists Daniel Simons and Daniel Levin. A trained actor approached an unsuspecting member of the public, map in hand and in a crowded place with lots of pedestrian traffic, and began to ask for directions. Then, by means of a clever maneuver involving two workmen and a door, a second actor replaced the first in the middle of the conversation.

The second actor could have different clothing and different hair color, yet more than 50 percent of the time the unsuspecting participants failed to notice the substitution. Incredibly, people even failed to notice a change in gender! In some of the experiments, a male actor started the dialogue and a female actor was substituted under the cover of the two workmen with the door, but still most people failed to spot the switch.

What is going on here? On the one hand, we have a subjective impression of being aware of everything, on the other hand, it seems, we see very little. How can this extraordinary finding be reconciled with our vivid impression that we see the whole visual environment? The solution, as psychologist Kevin O'Regan puts it, is that "The world is its own memory." We see very little at any given instant, but we can sample any part of our visual environment so rapidly with swift eye movement, that we think we have all of it at once in our consciousness experience. We get what we need, when we need it. The reason why the unwitting participants in Simons and Levin's experiment failed to notice the changeover was that they were doing their best to concentrate on the map, and although they had undoubtedly glanced at the face of the person holding it, that information was not critical and was not retained. We have very little attentional capacity, and information unrelated to our current task is quickly replaced with something we need right now.

There is a very general lesson here about seeing and cognition. The brain, like all biological systems, has become optimized over millennia of evolution. Brains have a very high level of energy consumption and must be kept as small as possible, or our heads would topple us over. Keeping a copy of the world in our brains would be a huge waste of cognitive resources and completely unnecessary. It is much more efficient to have rapid access to the actual world—to see only what we attend to and only attend to what we need—for the task at hand.

The one-tenth of a second or so that it takes to make an eye movement is such a short time in terms of the brain's neuron-based processing clock that it seems instantaneous. Our illusory impression that we are constantly aware of everything happens because our brains arrange for eye movements to occur and the particularly relevant information to be picked up just as we turn our attention to something we need. We do not have the whole visual world in conscious awareness. In truth, we have very little, but we can get anything we need through mechanisms that are rapid and unconscious. We are unaware that time has passed and cognitive effort has been expended. Exactly how we get the task-relevant information and construct meaning from it is a central focus of this book.

The understanding that we only sample the visual world on a kind of need-to-know basis leads to a profoundly different model of perception, one that has only emerged over the last decade or so as psychologists and neurophysiologists have devised new techniques to probe the brain.

According to this new view, visual thinking is a process that has the allocation of attention as its very essence. Attention, however, is multifaceted. Making an eye movement is an act of attending. The image on the retina is analyzed by further attention-related processes that tune our pattern-finding mechanisms to pull out the pattern most likely to help with whatever we are doing. At a cognitive level, we allocate scarce "working memory" resources to briefly retain in focal attention only to those pieces of information most likely to be useful. Seeing is all about attention. This new understanding leads to a revision of our thinking about the nature of visual consciousness. It is more accurate to say that we are conscious of the field of information to which we have rapid access rather than that we are immediately conscious of the world.

This new understanding also allows us to think about graphic design issues from a new and powerful perspective. We can now begin to develop a science of graphic design based on a scientific understanding of visual attention and pattern perception. To the extent to which it is possible to set out the message of this book in a single statement, the message is this: Visual thinking consists of a series of acts of attention, driving eye movements and tuning our pattern-finding circuits. These acts of attention are called visual queries, and understanding how visual queries work can make us better designers. When we interact with an information display, such as a map, diagram, chart, graph, or a poster on the wall, we are usually trying to solve some kind of cognitive problem. In the case of the map, it may be how to get from one location to another. In the case of the graph, it may be to determine the trend; for example, is the population increasing or decreasing over time? What is the shape of the trend? The answers to our questions can be obtained by a series of searches for particular patterns—visual queries.

At this point, you may be considering an obvious objection. What about the occasions when we are not intensely involved in some particular task? Surely we are not continually constructing visual queries when we are sitting in conversation with someone, or strolling along a sidewalk, or listening to music. There are two answers to this. The first is that, indeed, we are not always thinking visually with reference to the external environment; for example, we might be musing about the verbal content of a conversation we had over the telephone. The second is we are mostly unaware of just how structured and directed our seeing processes are. Even when we are in face-to-face conversation with someone, we constantly monitor facial expressions, the gestures and gaze direction of that person, to pick up cues that supplement verbal information. If we walk on a path along the sidewalk of a city, we constantly monitor for obstacles and choose a path to take into account the other pedestrians. Our eyes make anticipatory movements to bumps and stones that may trip us, and our brains detect anything that may be on a trajectory to cross our path, triggering an eye movement to monitor it. Seeing while walking is, except on the smoothest and most empty road, a highly structured process.

To flesh out this model of visual thinking, we need to introduce key elements of the apparatus of vision and how each element functions.

THE APPARATUS AND PROCESS OF SEEING

The eyes are something like little digital cameras. They contain lenses that focus an image on the eyeball. Many find the fact that the image is upside-down at the back of the eye to be a problem. But the brain is a computer, albeit quite unlike a digital silicon-based one, and it is as easy for the brain to compute with an upside-down image as a right-side-up image.

Just as a digital camera has an array of light-sensitive elements recording three different color values, so the eye also has an array of light-sensitive cones recording three different colors (leaving aside rods ). The analogy goes still further. Just as digital cameras compress image data for more compact transmission and storage, so several layers of cells in the retina extract what is most useful. As a result, information can be transmitted from the 100 million receptors in the eye to the brain by means of only 1 million fibers in the optic nerve.

There is, however, a profound difference between the signal sent from the eye to the back of the brain for early-stage processing and the signal sent to a memory chip from the pixel array of a digital camera. Brain pixels are concentrated in a central region called the fovea, whereas camera pixels are arranged in a uniform grid. Also, brain pixels function as little image-processing computers, not just passive recorders.

Visual detail can only be seen via the fovea, at the very center of the visual field. Our vision is so good in this region that each eye can resolve about 100 points on the head of a pin held at arm's length, but the region is only about the size of our thumbnail held at arm's length. At the edge of the visual field, vision is terrible; we can just resolve something the size of a human head. For example, we may be vaguely aware that someone is standing next to us, but unless we have already glanced in that direction we will not know who it is.

The non-uniformity of the visual processing power is such that half our visual brain power is directed to processing less than 5 percent of the visual world. This is why we have to move our eyes; it is the only way we can get all that brain power directed where it will be most useful. Non-uniformity is also one of the key pieces of evidence showing that we do not comprehend the world all at once. We cannot possibly grasp it all at once since our nervous systems only process details in a tiny location at any one instant.

The term brain pixel was introduced earlier by way of contrast with digital camera pixels. Brain pixels provide a kind of distorted neural map covering the whole visual field. There are a great many tiny ones processing information from central regions where we direct our gaze and only a few very large ones processing information at the edge of the visual field. Because of this, we cannot see much out of the corners of our eyes.

Strong eye muscles attached to each eyeball rotate it rapidly so that different parts of the visual world become imaged on the central high-resolution fovea. The muscles accelerate the eyeball to an angular velocity up to 900 degrees per second, then stop it, all in less than one-tenth of a second. This movement is called a saccade, and during a saccadic eye movement, vision is suppressed. The eyes move in a series of jerks pointing the fovea at interesting and useful locations, pausing briefly at each, before flicking to the next point of interest. Controlling these eye movements is a key part of the skill of seeing.

We do not see the world as jerky, nor for the most part are we aware of moving our eyes, and this adds yet more evidence that we do not perceive what is directly available through our visual sense.

THE ACT OF PERCEPTION

The visual field has a big hole in it. Cover your left eye and look at the X. Move the page nearer and farther away, being sure to keep the X and the B horizontally aligned.

At some point the B should disappear. This is because the image of the B is falling on the blind spot, a region of the retina where there are no receptors at the point where the optic nerve and blood vessels enter the eye. We are unaware that we have this hole in our visual field. The brain does not know that it has a blind spot, just as it does not know how little of the world we see at each moment. This is more evidence that seeing is not at all the passive registration of information. Instead it is active and constructive.

Broadly speaking, the act of perception is determined by two kinds of processes: bottom-up, driven by the visual information in the pattern of light falling on the retina, and top-down, driven by the demands of attention, which in turn are determined by the needs of the tasks. The picture shown above is designed to demonstrate how top-down attention can influence what you see and how.

First look at the letters and lines. Start with the M and follow the sequence of lines and letters to see what word is spelled. You will find yourself making a series of eye movements focusing your visual attention on the small area of each letter in turn. You will, of course, notice the faces in the background but as you perform the task they will recede from your consciousness.

(Continues...)



Excerpted from Visual Thinking by Colin Ware Copyright © 2008 by Elsevier Inc.. Excerpted by permission of MORGAN KAUFMANN PUBLISHERS. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

VISUAL QUERIES
WHAT WE CAN EASILY SEE
STRUCTURING TWO DIMENSIONAL SPACE
COLOR
GETTING THE INFORMATION: VISUAL SPACE AND TIME
VISUAL OBJECTS, WORDS, AND MEANING
VISUAL AND VERBAL NARRATIVE
CREATIVE META SEEING
THE DANCE OF MEANING
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)