Crystal Plasticity Finite Element Methods: in Materials Science and Engineering / Edition 1

Crystal Plasticity Finite Element Methods: in Materials Science and Engineering / Edition 1

by Franz Roters, Thomas R. Bieler, Dierk Raabe, Philip Eisenlohr
     
 

View All Available Formats & Editions

ISBN-10: 352732447X

ISBN-13: 9783527324477

Pub. Date: 12/14/2010

Publisher: Wiley

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical

Overview

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load.
With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Product Details

ISBN-13:
9783527324477
Publisher:
Wiley
Publication date:
12/14/2010
Pages:
208
Product dimensions:
6.90(w) x 9.70(h) x 0.60(d)

Table of Contents

Preface
INTRODUCTION TO CRYSTALLINE ANISOTROPY AND THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD

PART I: Fundamentals

METALLURGICAL FUNDAMENTALS OF PLASTIC DEFORMATION
Introduction
Lattice Dislocations
Deformation Martensite and Mechanical Twinning
CONTINUUM MECHANICS
Kinematics
Mechanical Equilibrium
Thermodynamics
THE FINITE ELEMENT METHOD
The Principle of Virtual Work
Solution Procedure -
Discretization
Non-Linear FEM
THE CRYSTAL PLASTICITY FINITE ELEMENT METHOD AS A MULTI-PHYSICS FRAMEWORK

PART II: The Crystal Plasticity Finite Element Method

CONSTITUTIVE MODELS
Dislocation Slip
Displacive Transformations
Damage
HOMOGENIZATION
Introduction
Statistical Representation of Crystallographic Texture
Computational Homogenization
Mean-Field Homogenization
Grain-Cluster Methods
NUMERICAL ASPECTS OF CRYSTAL PLASTICITY FINITE ELEMENT METHOD IMPLEMENTATIONS
General Remarks
Explicit Versus Implicit Integration Methods
Element Types

PART III: Application

MICROSCOPIC AND MESOSCOPIC EXAMPLES
Introduction to the Field of CPFE Experimental Validation
Stability and Grain Fragmentation in Aluminum under Plane Strain Deformation
Texture and Dislocation Density Evolution in a Bent Single-Crystalline Copper-Nanowire
Texture and Microstructure underneath a Nanoindent in a Copper Single Crystal
Application of a Nonlocal Dislocation Model Including Geometrically Necessary Dislocations to Simple Shear Tests of Aluminum Single Crystals
Application of a Grain Boundary Constitutive Model to Simple Shear Tests of Aluminum Bicrystals with Different Misorientation
Evolution of Dislocation Density in a Crystal Plasticity Model
Three-Dimensional Aspects of Oligocrystal Plasticity
Simulation of Recrystallization Using Micromechanical Results of CPFE Simulations
Simulations of Multiphase TRIP Steels
Damage Nucleation Example
The Grain Size-Dependence in Polycrystal Models
MACROSCOPIC EXAMPLES
Using Elastic Constants from Ab Initio Simulations for Predicting Textures and Texture-Dependent Elastic Properties of Beta-Titanium
Simulation of Earing during Cup Drawing of Steel and Aluminum
Simulation of Lankford Values
Virtual Material Testing for Sheet Stamping Simulations
OUTLOOK AND CONCLUSIONS

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >