Comprehensive Treatise of Electrochemistry: Volume 10 Bioelectrochemistry

Comprehensive Treatise of Electrochemistry: Volume 10 Bioelectrochemistry


View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Monday, February 24
3 New & Used Starting at $79.50


1.1. Definition of Terms-Thrombosis, Thromboembolic Disease, Atherosclerosis, and Blood Clotting The terms heart attack or myocardial infarction are more commonly used than thrombosis. The infarct-muscle destruction is simply the end result and thrombosis is the real cause of the heart attack. Thrombosis may be defined as the process of formation of a coalescent or agglutinated solid mass of blood components in the blood stream. Thrombi formed in either arteries or veins often cause occlusion in the vascular system and prevent blood flow. Obstruc­ to the blood vessel usually occurs at the site where the thrombi deposit. tion Furthermore, thrombi may break loose, travel through the circulating blood stream, and cause obstruction at some distal point of narrowing elsewhere. The mass or thrombus that moves is referred to as an "embolus." The two phenomena are lumped together under the term thromboembolic disease. Thrombosis that reduces blood supply to the heart is the primary factor in heart attacks.

Product Details

ISBN-13: 9781461294443
Publisher: Springer US
Publication date: 10/12/2011
Edition description: 1985
Pages: 564
Product dimensions: 7.01(w) x 10.00(h) x 0.04(d)

Table of Contents

1. The Origin of Electrical Potential in Biological Systems.- 1. Electrical Potential of Biomolecules.- 1.1. Electrostatic Potential.- 1.2. Electrical Potential Due to Molecular Polarization.- 1.3. Potential Due to Electron Transfer Reaction.- 2. Electrical Potential at Biomolecular Interfaces.- 2.1. Equilibrium Interfacial Electrical Potentials.- 2.2. Nonequilibrium Interfacial Potential.- 3. Transmembrane Potential across Cell Membranes.- 3.1. Resting Membrane Potential.- 3.2. Excitation Potential.- 4. Molecular Interaction in Biological Systems.- 4.1. Short-range Repulsive Interactions.- 4.2. London Dispersion (van der Waals) Interactions.- 4.3. Electrical Double Layer Interaction and DLVO Theory.- 4.4. DLVO Theory Applied to Biological Systems.- 2. Electrochemistry of Low Molecular Weight Organic Compounds of Biological Interest.- 1. Introduction.- 2. Catecholamines.- 3. Phenothiazines.- 4. ?-Tocopherol and ?-Tocopherylquinone.- 5. Purines.- 6. Conclusions.- References.- 3. Electrochemistry of Biopolymers.- 1. Introduction.- 2. Proteins.- 2.1. Electrochemical Classification.- 2.2. Polyelectrolyte Behavior in Solution.- 2.3. Polyelectrolyte Behavior at Electrodes.- 2.4. Kinetics of Denaturation.- 2.5. Complexes with Dyes and Drugs.- 3. Polysaccharides.- 3.1. Adsorption.- 3.2. Electron Exchange.- 4. Nucleic Acids.- 4.1. Electrochemical Classification.- 4.2. Polyelectrolyte Behavior in Solution.- 4.3. Polyelectrolyte Behavior at Electrodes.- 4.4. Kinetics of Denaturation.- 4.5. Complexes with Dyes and Drugs.- 5. Nucleoproteins.- 5.1. Principles of Interactions.- 5.2. DNA-Histone Complexes.- 5.3. An Electrostatic Model.- 6. Outlook.- References.- 4. Bioelectrocatalysis.- 1. Introduction.- 2. Physicochemical Properties of Enzymes.- 2.1. Classification of Enzymes and Their Structure.- 2.2. The Mechanism of Enzymatic Catalysis.- 2.3. The Structure and Functions of Proteins—Electron Carriers and Enzymes.- 3. Methods of Immobilization of Enzymes.- 3.1. Immobilization by Adsorption.- 3.2. Immobilization by Inclusion into the Space Lattice of Gels.- 3.3. Chemical Methods of Immobilization.- 3.4. Properties of Immobilized Enzymes.- 4. Electrochemical Properties of Protein Macromolecules and Their Active Groups.- 4.1. Electrochemical Properties of Active Groups.- 4.2. Redox Transformations of Proteins and Enzymes on Electrodes.- 5. Methods of Conjugation of Electrochemical and Enzymic Reactions.- 6. The Use of Enzymes to Accelerate Electrochemical Reactions.- 6.1. Hydrogen Reaction.- 6.2. Oxygen Reaction.- 6.3. Oxidation of Organic Compounds.- 7. Mechanism of Bioelectrocatalysis.- 7.1. Maximum Rates of Bioelectrocatalytic Reactions.- 7.2. The State of Adsorptionally Immobilized Enzymes.- 7.3. Electron Transfer in the Mediatorless Method of Bioelectrocatalysis.- 8. Prospects for Practical Utilization of Bioelectrocatalysis.- References.- 5. Electrochemical Aspects of Bioenergetics.- 1. Introduction.- 2. Interfacial Properties of Electrodes and Biological Membranes.- 2.1. The Metal Electrode/Aqueous Solution Interface.- 2.2. The Semiconductor Electrode/Aqueous Solution Interface.- 2.3. Biological Membranes.- 3. Thermodynamic Studies of Biological Molecules.- 3.1. Optically Transparent Thin-Layer Electrochemistry.- 3.2. Indirect Coulometric Titrations at Optically Transparent Electrodes.- 4. Kinetics and Mechanisms of Biological Electron Transfer Reactions.- 4.1. Homogeneous Electron Transfer Kinetic Studies.- 4.2. Heterogeneous Electron Transfer Kinetic and Mechanistic Studies.- 5. Conclusions.- References.- 6. Electrochemical Aspects of Metabolism.- 1. Introduction.- 1.1. Objectives.- 1.2. Scope.- 2. The Living Cell as an Electrochemical System.- 2.1. Structural Analogies between Living Cells and Electrochemical Devices.- 2.2. Examples of Electrochemical Phenomena in Living Systems.- 2.3. Mechanisms of Electric Field Generation and Charge Conduction.- 2.4. Coordination of Proton and Metabolic Flux.- 3. Electrochemical Regulation of Metabolism.- 3.1. Some Unanswered Questions.- 3.2. Current Concepts of Metabolic Regulation.- 3.3. Influence of Cellular Electric Fields on Metabolic Processes.- 3.4. Mechanisms of “Reversed Electron Transfer”.- 3.5. Regulation of Energy Flow and Heat Production.- 4. Electrochemical Processes and Disease.- 4.1. The Free Radical Theory of O2 Toxicity.- 4.2. The Rate and Function of Superoxide Production.- 4.3. Possible Roles of Superoxide in Hormonal and Neuromuscular Signal Transmission.- 4.4. Possible Mechanisms by which Superoxide Brings About Cell Damage and Promotes Lipid Peroxidation.- 4.5. Conclusion.- References.- 7. Electrochemistry of the Nervous Impulse.- 1. Introduction.- 1.1. Historical Background.- 1.2. The Nerve Cell.- 1.3. Excitation Phenomenon.- 1.4. Hodgkin-Huxley Equations.- 2. Electrochemical models of the Nerve Fiber.- 2.1. Lillie-Bonhoeffer Model.- 2.2. Teorell’s Electrokinetic Model.- 3. Excitation Propagation.- 3.1. Reduced Hodgkin-Huxley Equations.- 3.2. Ionic Current Generator Model.- 3.3. Activity Wave in a Neuron Net.- 4. Ionic Transport across Membranes.- 4.1. Electrodiffusion Equation.- 4.2. Bilayer Lipid Membranes.- 4.3. Induced Ionic Transport.- 5. Channels in Biomembranes.- 5.1. Facts and Hypotheses.- 5.2. Conductance Control by Electric Field.- 5.3. Open Channels: Selectivity and Conductance.- 6. Conclusions.- References.- 8. Electrochemical Approach for the Solution of Cardiovascular Problems.- 1. Introduction.- 1.1. Definition of Terms—Thrombosis, Thromboembolic Disease, Atherosclerosis, and Blood Clotting.- 1.2. Evidence for Electrochemical Mechanisms in Cardiovascular Phenomena.- 2. Hematological and Electrochemical Aspects of Blood Coagulation Mechanisms.- 2.1. The Hematologists’ View of the Blood Coagulation Sequence.- 2.2. The Role of Blood Cells, Particularly Platelets, in Blood Coagulation.- 2.3. Electrosorption and Electron Transfer Reactions of Some Blood Coagulation Factors at Metal-Electrolyte Interfaces.- 2.4. Adsorption Reactions of Some Blood Coagulation Factors at Insulator-Solution Interfaces.- 3. An Electrokinetic Approach for the Characterization of the Blood Vessel Walls and of Blood Cells and for the Selection of Anticoagulant Drugs.- 3.1. Surface Charge Characteristics of Blood Vessel Walls Using Streaming Potential and Electroosmosis Techniques.- 3.2. Surface Charge Characteristics of Blood Cells Using Mainly Electrophoresis and to a Limited Extent Sedimentation Potential Techniques.- 3.3. Correlations between Effects of Drugs on the Surface Charge Characteristics of the Vascular System and their Pro- or Antithrombogenic Properties.- 4. An Electrochemical Approach for the Selection of Vascular and Heart Valve Prostheses.- 4.1. Electronically Conducting Materials.- 4.2. Insulator Materials.- 5. Conclusions.- References.- 9. Electrochemical Techniques in the Biological Sciences.- 1. Electroanalytical Techniques.- 1.1. Bioelectrodes.- 1.2. Analytical Applications of Bioelectrodes.- 2. Electrophysiology.- 2.1. Measurement of Transmembrane Potential.- 2.2. Stimulation of Excitable Cells.- 2.3. Control of Membrane Potential (Voltage Clamping).- 2.4. Iontophoresis.- 2.5. EEG, EMG, ECG.- 3. Electrobiology.- 3.1. Stimulation of Nonexcitable Cells.- 3.2. In Vivo Electrokinetic Potentials.- 3.3. Microbial Electrochemistry.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews