Pub. Date:
High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices / Edition 1

High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices / Edition 1


Current price is , Original price is $166.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9780471360902
Publisher: Wiley
Publication date: 09/08/2000
Series: Wiley - IEEE Series
Pages: 362
Product dimensions: 6.40(w) x 9.70(h) x 1.00(d)

About the Author

STEPHEN H. HALL is a Senior Design Engineer at Intel Corporation, Portland, Oregon.

GARRETT W. HALL is a Silicon Systems Engineer at Intel Corporation.

JAMES A. McCALL is a Senior Design Engineer at Intel Corporation.

Read an Excerpt

Click to read or download

Table of Contents


1. The Importance of Interconnect Design.

1.1 The Basics.

1.2 The Past and the Future.

2. Ideal Transmission Line Fundamentals.

2.1 Transmission Line Structures on a PCB or MCM.

2.2 Wave Propagation.

2.3 Transmission Line Parameters.

2.3.1 Characteristic Impedance.

2.3.2 Propagation Velocity, Time, and Distance.

2.3.3 Equivalent Circuit Models for SPICE Simulation.

2.4 Launching Initial Wave and Transmission Line Reflections.

2.4.1 Initial Wave.

2.4.2 Multiple Reflections.

2.4.3 Effect of Rise Time on Reflections.

2.4.4 Reflections From Reactive Loads.

2.4.5 Termination Schemes to Eliminate Reflections.

2.5 Additional Examples.

2.5.1 Problem.

2.5.2 Goals.

2.5.3 Calculating the Cross-Sectional Geometry of the PCB.

2.5.4 Calculating the Propagation Delay.

2.5.5 Determining the Wave Shape Seen at the Receiver.

2.5.6 Creating an Equivalent Circuit.

3. Crosstalk.

3.1 Mutual Inductance and Mutual Capacitance.

3.2 Inductance and Capacitance Matrix.

3.3 Field Simulators.

3.4 Crosstalk-Induced Noise.

3.5 Simulating Crosstalk Using Equivalent Circuit Models.

3.6 Crosstalk-Induced Flight Time and Signal Integrity Variations.

3.6.1 Effect of Switching Patterns on Transmission Line Performance.

3.6.2 Simulating Traces in a Multiconductor System Using a Single-Line Equivalent Model.

3.7 Crosstalk Trends.

3.8 Termination of Odd- and Even-Mode Transmission Line Pairs.

3.8.1 Pi Termination Network.

3.8.2 T Termination Network.

3.9 Minimization of Crosstalk.

3.10 Additional Examples.

3.10.1 Problem.

3.10.2 Goals.

3.10.3 Determining the Maximum Crosstalk-Induced Impedance and Velocity Swing.

3.10.4 Determining if Crosstalk Will Induce False Triggers.

4. Nonideal Interconnect Issues.

4.1 Transmission Line Losses.

4.1.1 Conductor DC Losses.

4.1.2 Dielectric DC Losses.

4.1.3 Skin Effect.

4.1.4 Frequency-Dependent Dielectric Losses.

4.2 Variations in the Dielectric Constant.

4.3 Serpentine Traces.

4.4 Intersymbol Interference.

4.5 Effects of 90 Bends.

4.6 Effect of Topology.

5. Connectors, Packages, and Vias.

5.1 Vias.

5.2 Connectors.

5.2.1 Series Inductance.

5.2.2 Shunt Capacitance.

5.2.3 Connector Crosstalk.

5.2.4 Effects of Inductively Coupled Connector Pin Fields.

5.2.5 EMI.

5.2.6 Connector Design Guidelines.

5.3 Chip Packages.

5.3.1 Common Types of Packages.

5.3.2 Creating a Package Model.

5.3.3 Effects of a Package.

5.3.4 Optimal Pin-Outs.

6. Nonideal Return Paths, Simultaneous Switching Noise, and Power Delivery.

6.1 Nonideal Current Return Paths.

6.1.1 Path of Least Inductance.

6.1.2 Signals Traversing a Ground Gap.

6.1.3 Signals That Change Reference Planes.

6.1.4 Signals Referenced to a Power or a Ground Plane.

6.1.5 Other Nonideal Return Path Scenarios.

6.1.6 Differential Signals.

6.2 Local Power Delivery Networks.

6.2.1 Determining the Local Decoupling Requirements for High-Speed I/O.

6.2.2 System-Level Power Delivery.

6.2.3 Choosing a Decoupling Capacitor.

6.2.4 Frequency Response of a Power Delivery System.

6.3 SSO/SSN.

6.3.1 Minimizing SSN.

7. Buffer Modeling.

7.1 Types of Models.

7.2 Basic CMOS Output Buffer.

7.2.1 Basic Operation.

7.2.2 Linear Modeling of the CMOS Buffer.

7.2.3 Behavioral Modeling of the Basic CMOS Buffer.

7.3 Output Buffers That Operate in the Saturation Region.

7.4 Conclusions.

8. Digital Timing Analysis.

8.1 Common-Clock Timing.

8.1.1 Common-Clock Timing Equations.

8.2 Source Synchronous Timing.

8.2.1 Source Synchronous Timing Equations.

8.2.2 Deriving Source Synchronous Timing Equations from an Eye Diagram.

8.2.3 Alternative Source Synchronous Schemes.

8.3 Alternative Bus Signaling Techniques.

8.3.1 Incident Clocking.

8.3.2 Embedded Clock.

9. Design Methodologies.

9.1 Timings.

9.1.1 Worst-Case Timing Spreadsheet.

9.1.2 Statistical Spreadsheets.

9.2 Timing Metrics, Signal Quality Metrics, and Test Loads.

9.2.1 Voltage Reference Uncertainty.

9.2.2 Simulation Reference Loads.

9.2.3 Flight Time.

9.2.4 Flight-Time Skew.

9.2.5 Signal Integrity.

9.3 Design Optimization.

9.3.1 Paper Analysis.

9.3.2 Routing Study.

9.4 Sensitivity Analysis.

9.4.1 Initial Trend and Significance Analysis.

9.4.2 Ordered Parameter Sweeps.

9.4.3 Phase 1 Solution Space.

9.4.4 Phase 2 Solution Space.

9.4.5 Phase 3 Solution Space.

9.5 Design Guidelines.

9.6 Extraction.

9.7 General Rules of Thumb to Follow When Designing a System.

10. Radiated Emissions Compliance and System Noise Minimization.

10.1 FCC Radiated Emission Specifications.

10.2 Physical Mechanisms of Radiation.

10.2.1 Differential-Mode Radiation.

10.2.2 Common-Mode Radiation.

10.2.3 Wave Impedance.

10.3 Decoupling and Choking.

10.3.1 High-Frequency Decoupling at the System Level.

10.3.2 Choking Cables and Localized Power and Ground Planes.

10.3.3 Low-Frequency Decoupling and Ground Isolation.

10.4 Additional PCB Design Criteria, Package Considerations, and Pin-Outs.

10.4.1 Placement of High-Speed Components and Traces.

10.4.2 Crosstalk.

10.4.3 Pin Assignments and Package Choice.

10.5 Enclosure (Chassis) Considerations.

10.5.1 Shielding Basics.

10.5.2 Apertures.

10.5.3 Resonances.

10.6 Spread Spectrum Clocking.

11. High-Speed Measurement Techniques.

11.1 Digital Oscilloscopes.

11.1.1 Bandwidth.

11.1.2 Sampling.

11.1.3 Other Effects.

11.1.4 Statistics.

11.2 Time-Domain Reflectometry.

11.2.1 TDR Theory.

11.2.2 Measurement Factors.

11.3 TDR Accuracy.

11.3.1 Launch Parasitics.

11.3.2 Probe Types.

11.3.3 Reflections.

11.3.4 Interface Transmission Loss.

11.3.5 Cable Loss.

11.3.6 Amplitude Offset Error.

11.4 Impedance Measurement.

11.4.1 Accurate Characterization of Impedance.

11.4.2 Measurement Region in TDR Impedance Profile.

11.5 Odd- and Even-Mode Impedance.

11.6 Crosstalk Noise.

11.7 Propagation Velocity.

11.7.1 Length Difference Method.

11.7.2 Y-Intercept Method.

11.7.3 TDT Method.

11.8 Vector Network Analyzer.

11.8.1 Introduction to S Parameters.

11.8.2 Equipment.

11.8.3 One-Port Measurements (ZO,L,C).

11.8.4 Two-Port Measurements (Td, Attenuation, Crosstalk).

11.8.5 Calibration.

11.8.6 Calibration for One-Port Measurements.

11.8.7 Calibration for Two-Port Measurements.

11.8.8 Calibration Verification.

Appendix A: Alternative Characteristic Impedance Formulas.

A.1 Microstrip.

A.2 Symmetric Stripline.

A.3 Offset Stripline.

Appendix B: GTL Current-Mode Analysis.

B.1 Basic GTL Operation.

B.2 GTL Transitions When a Middle Agent Is Driving.

B.3 GTL Transitions When an End Agent With a Termination Is Driving.

B.4 Transitions When There is a Pull-Up at the Middle Agent.

Appendix C: Frequency-Domain Components in a Digital Signal.

Appendix D: Useful S-Parameter Conversions.

D.1 ABCD, Z, and Y Parameters.

D.2 Normalizing the S Matrix to a Different Characteristic Impedance.

D.3 Derivation of the Formulas Used to Extract the Mutual Inductance and Capacitance from a Short Structure Using S21 Measurements.

D.4 Derivation of the Formula to Extract Skin Effect Resistance from a Transmission Line.

Appendix E: Definition of the Decibel.

Appendix F: FCC Emission Limits.



What People are Saying About This

From the Publisher

" excellent guidebook for interconnect design...this very valuable work is highly recommended for design engineers and recent graduates struggling to transition from theory to real-world design." (Choice, Vol. 38, No. 8, April 2001)

"This is an excellent book for anyone who has basic circuit theory knowledge.... It is a recommended book for all academic engineering libraries and would, also, be useful for the practicing engineer." (E-Streams, Vol. 4, No. 8, August 2001)


This book covers the practical and theoretical aspects necessary to design modern high-speed digital systems at the platform level. The book walks the reader through every required concept, from basic transmission line theory to digital timing analysis, high-speed measurement techniques, as well as many other topics. In doing so, a unique balance between theory and practical applications is achieved that will allow the reader not only to understand the nature of the problem, but also provide practical guidance to the solution. The level of theoretical understanding is such that the reader will be equipped to see beyond the immediate practical application and solve problems not contained within these pages. Much of the information in this book has not been needed in past digital designs but is absolutely necessary today. Most of the information covered here is not covered in standard college curricula, at least not in its focus on digital design, which is arguably one of the most significant industries in electrical engineering.

The focus of this book is on the design of robust high-volume, high-speed digital products such as computer systems, with particular attention paid to computer busses. However, the theory presented is applicable to any high-speed digital system. all of the techniques covered in this book have been applied in industry to actual digital products that have been successfully produced and sold in high volume.

Practicing engineers and graduate and undergraduate students who have completed basic electromagnetic or microwave design classes are equipped to fully comprehend the theory presented in this book. at a practical level, however, basic circuit theory is all the background required to apply the formulas in this book.

Chapter 1 describes why it is important to comprehend the lessons taught in this book. (authored by Garrett Hall)

Chapter 2 introduces basic transmission line theory and terminology with specific digital focus. This chapter forms the basis of much of the material that follow. (authored by Stephen Hall)

Chapters 3 and 4 introduce crosstalk effects, explain their relevance to digital timings, and explore nonideal transmission line effects. (authored by Stephen Hall)

Chapter 5 explains the impact of chip packages, vias, connectors, and many other aspects that affect the performance of a digital system. (authored by Stephen Hall)

Chapter 6 explains elusive effects such as simultaneous switching noise and nonideal current return path distortions that can devastate a digital design if not properly accounted for. (authored by Stephen Hall)

Chapter 7 discusses different methods that can be used to model the output buffers that are used to drive digital signals onto a bus. (authored by Garrett Hall)

Chapter 8 explains in detail several methods of system level digital timing. It describes the theory behind different timing schemes and relates them to the high-speed digital effects described throughout the book. (authored by Stephen Hall)

Chapter 9 addresses one of the most far-reaching challenges that is likely to be encountered: handling the very large number of variables affecting a system and reducing them to a manageable methodology. This chapter explains how to make an intractable problem tractable. It introduces a specific design methodology that has been used to produce very high performance digital products. (authored by Stephen Hall)

Chapter 10 covers the subject of radiated emissions, which causes great fear in the hearts of system designers because radiated emission problems usually cannot be addressed until a prototype has been built, at which time changes can be very costly and time-constrained. (authored by Garrett Hall)

Chapter 11 covers the practical aspects of making precision measurements in high-speed digital systems. (authored by James McCall)

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews