Programming Collective Intelligence: Building Smart Web 2.0 Applications

Programming Collective Intelligence: Building Smart Web 2.0 Applications

by Toby Segaran

Paperback

$49.99
View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Monday, April 29

Product Details

ISBN-13: 9780596529321
Publisher: O'Reilly Media, Incorporated
Publication date: 08/15/2007
Pages: 362
Sales rank: 1,291,246
Product dimensions: 7.00(w) x 9.19(h) x 0.90(d)

About the Author

Toby Segaran is the author of Programming Collective Intelligence, a very popular O'Reilly title. He was the founder of Incellico, a biotech software company later acquired by Genstruct. He currently holds the title of Data Magnate at Metaweb Technologies and is a frequent speaker at technology conferences.

Table of Contents

Praise for Programming Collective Intelligence;
Preface;
Prerequisites;
Style of Examples;
Why Python?;
Open APIs;
Overview of the Chapters;
Conventions;
Using Code Examples;
How to Contact Us;
Safari® Books Online;
Acknowledgments;
Chapter 1: Introduction to Collective Intelligence;
1.1 What Is Collective Intelligence?;
1.2 What Is Machine Learning?;
1.3 Limits of Machine Learning;
1.4 Real-Life Examples;
1.5 Other Uses for Learning Algorithms;
Chapter 2: Making Recommendations;
2.1 Collaborative Filtering;
2.2 Collecting Preferences;
2.3 Finding Similar Users;
2.4 Recommending Items;
2.5 Matching Products;
2.6 Building a del.icio.us Link Recommender;
2.7 Item-Based Filtering;
2.8 Using the MovieLens Dataset;
2.9 User-Based or Item-Based Filtering?;
2.10 Exercises;
Chapter 3: Discovering Groups;
3.1 Supervised versus Unsupervised Learning;
3.2 Word Vectors;
3.3 Hierarchical Clustering;
3.4 Drawing the Dendrogram;
3.5 Column Clustering;
3.6 K-Means Clustering;
3.7 Clusters of Preferences;
3.8 Viewing Data in Two Dimensions;
3.9 Other Things to Cluster;
3.10 Exercises;
Chapter 4: Searching and Ranking;
4.1 What's in a Search Engine?;
4.2 A Simple Crawler;
4.3 Building the Index;
4.4 Querying;
4.5 Content-Based Ranking;
4.6 Using Inbound Links;
4.7 Learning from Clicks;
4.8 Exercises;
Chapter 5: Optimization;
5.1 Group Travel;
5.2 Representing Solutions;
5.3 The Cost Function;
5.4 Random Searching;
5.5 Hill Climbing;
5.6 Simulated Annealing;
5.7 Genetic Algorithms;
5.8 Real Flight Searches;
5.9 Optimizing for Preferences;
5.10 Network Visualization;
5.11 Other Possibilities;
5.12 Exercises;
Chapter 6: Document Filtering;
6.1 Filtering Spam;
6.2 Documents and Words;
6.3 Training the Classifier;
6.4 Calculating Probabilities;
6.5 A Naïve Classifier;
6.6 The Fisher Method;
6.7 Persisting the Trained Classifiers;
6.8 Filtering Blog Feeds;
6.9 Improving Feature Detection;
6.10 Using Akismet;
6.11 Alternative Methods;
6.12 Exercises;
Chapter 7: Modeling with Decision Trees;
7.1 Predicting Signups;
7.2 Introducing Decision Trees;
7.3 Training the Tree;
7.4 Choosing the Best Split;
7.5 Recursive Tree Building;
7.6 Displaying the Tree;
7.7 Classifying New Observations;
7.8 Pruning the Tree;
7.9 Dealing with Missing Data;
7.10 Dealing with Numerical Outcomes;
7.11 Modeling Home Prices;
7.12 Modeling "Hotness";
7.13 When to Use Decision Trees;
7.14 Exercises;
Chapter 8: Building Price Models;
8.1 Building a Sample Dataset;
8.2 k-Nearest Neighbors;
8.3 Weighted Neighbors;
8.4 Cross-Validation;
8.5 Heterogeneous Variables;
8.6 Optimizing the Scale;
8.7 Uneven Distributions;
8.8 Using Real Data—the eBay API;
8.9 When to Use k-Nearest Neighbors;
8.10 Exercises;
Chapter 9: Advanced Classification: Kernel Methods and SVMs;
9.1 Matchmaker Dataset;
9.2 Difficulties with the Data;
9.3 Basic Linear Classification;
9.4 Categorical Features;
9.5 Scaling the Data;
9.6 Understanding Kernel Methods;
9.7 Support-Vector Machines;
9.8 Using LIBSVM;
9.9 Matching on Facebook;
9.10 Exercises;
Chapter 10: Finding Independent Features;
10.1 A Corpus of News;
10.2 Previous Approaches;
10.3 Non-Negative Matrix Factorization;
10.4 Displaying the Results;
10.5 Using Stock Market Data;
10.6 Exercises;
Chapter 11: EVOLVING INTELLIGENCE;
11.1 What Is Genetic Programming?;
11.2 Programs As Trees;
11.3 Creating the Initial Population;
11.4 Testing a Solution;
11.5 Mutating Programs;
11.6 Crossover;
11.7 Building the Environment;
11.8 A Simple Game;
11.9 Further Possibilities;
11.10 Exercises;
Chapter 12: Algorithm Summary;
12.1 Bayesian Classifier;
12.2 Decision Tree Classifier;
12.3 Neural Networks;
12.4 Support-Vector Machines;
12.5 k-Nearest Neighbors;
12.6 Clustering;
12.7 Multidimensional Scaling;
12.8 Non-Negative Matrix Factorization;
12.9 Optimization;
Third-Party Libraries;
Universal Feed Parser;
Python Imaging Library;
Beautiful Soup;
pysqlite;
NumPy;
matplotlib;
pydelicious;
Mathematical Formulas;
Euclidean Distance;
Pearson Correlation Coefficient;
Weighted Mean;
Tanimoto Coefficient;
Conditional Probability;
Gini Impurity;
Entropy;
Variance;
Gaussian Function;
Dot-Products;
Colophon;

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

Programming Collective Intelligence: Building Smart Web 2.0 Applications 3.2 out of 5 based on 0 ratings. 6 reviews.
halabelson on LibraryThing More than 1 year ago
This is a terrific resource for anyone interested in modern methods of data aggregation and statistics because it provides actual working code that you can copy and modify. You can get all the source files online from the author's web site.
customersurveys on LibraryThing More than 1 year ago
Amazing piece of work. Makes much sense of the power of software and algorithms in predicting customer preferences and behavior based on aggregate data. Very well done with concise examples in Python programming language. Entire book is quite focused on modern web sites and web technology.
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Anonymous More than 1 year ago
Guest More than 1 year ago
This book is one of the best technology books I have EVER read. It covers many topics with both depth and unity, yet simplicity and structure. It is well written and fun, and certainly useful. This book is a must read for anyone interested even vaguely in collective intelligence.