Energy Scavenging for Wireless Sensor Networks: with Special Focus on Vibrations

Energy Scavenging for Wireless Sensor Networks: with Special Focus on Vibrations


Choose Expedited Shipping at checkout for guaranteed delivery by Thursday, February 21

Product Details

ISBN-13: 9781461351009
Publisher: Springer US
Publication date: 11/05/2012
Edition description: 2004
Pages: 212
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1 Introduction.- 1. Energy Storage.- 2. Power Distribution.- 3. Power scavenging.- 4. Summary of potential power sources.- 5. Overview of Vibration-to-Electricity Conversion Research.- 2 Vibration Sources and Conversion Model.- 1. Types of Vibrations Considered.- 2. Characteristics of Vibrations Measured.- 3. Generic Vibration-to-Electricity Conversion Model.- 4. Efficiency of Vibration-to-Electricity Conversion.- 3 Comparison of Methods.- 1. Electromagnetic (Inductive) Power Conversion.- 2. Electrostatic (Capacitive) Power Conversion.- 3. Piezoelectric Power Conversion.- 4. Comparison of Energy Density of Converters.- 5. Summary of Conversion Mechanisms.- 4 Piezoelectric Converter Design.- 1. Basic Design Configuration.- 2. Material Selection.- 3. Analytical Model for Piezoelectric Generators.- 4. Discussion of Analytical Model for Piezoelectric Generators.- 5. Initial Prototype and Model Verification.- 6. Design Optimization.- 7. Analytical Model Adjusted for a Capacitive Load.- 8. Discussion of Analytical Model Changes for Capacitive Load.- 9. Optimization for a Capacitive Load.- 10. Conclusions.- 5 Piezoelectric Converter Test Results.- 1. Implementation of Optimized Converters.- 2. Resistive load tests.- 3. Discussion of resistive load tests.- 4. Capacitive load tests.- 5. Discussion of capacitive load test.- 6. Results from testing with a custom designed RF transceiver.- 7. Discussion of results from custom RF transceiver test.- 8. Results from test of complete wireless sensor node.- 9. Discussion of results from complete wireless sensor node.- 10. Conclusions.- 6 Electrostatic Converter Design.- 1. Explanation of concept and principle of operation.- 2. Electrostatic Conversion Model.- 3. Exploration of design concepts and device specific models.- 4. Comparison of design concepts.- 5. Design Optimization.- 6. Flexure design.- 7. Discussion of design and conclusions.- 7 Fabrication of Electrostatic Converters.- 1. Choice of process and wafer technology.- 2. Basic process flow.- 3. Specific processes used.- 4. Conclusions.- 8 Electrostatic Converter Test Results.- 1. Macro-scale prototype and results.- 2. Results from fluidic self-assembly process prototypes.- 3. Results from integrated process prototypes.- 4. Results from simplified custom process prototypes.- 5. Discussion of Results and Conclusions.- 9 Conclusions.- 1. Justification for focus on vibrations as a power source.- 2. Piezoelectric vibration to electricity converters.- 3. Design considerations for piezoelectric converters.- 4. Electrostatic vibration to electricity converters.- 5. Design considerations for electrostatic converters.- 6. Summary of conclusions.- 7. Recommendations for future work.- Acknowledgments.- Appendix A: Analytical Model of a Piezoelectric Generator.- 1. Geometric terms for bimorph mounted as a cantilever.- 2. Basic dynamic model of piezoelectric generator.- 3. Expressions of interest from basic dynamic model.- 4. Alterations to the basic dynamic model.- Appendix B: Analytical Model of an Electrostatic Generator.- 1. Derivation of electrical and geometric expressions.- 2. Derivation of mechanical dynamics and electrostatic forces.- 3. Simulation of the in-plane gap closing converter.- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews