High-Efficiency Solar Cells: Physics, Materials, and Devices

High-Efficiency Solar Cells: Physics, Materials, and Devices

Paperback(Softcover reprint of the original 1st ed. 2014)

$199.99
View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, August 28

Overview

As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.

Product Details

ISBN-13: 9783319349053
Publisher: Springer International Publishing
Publication date: 10/07/2016
Series: Springer Series in Materials Science , #190
Edition description: Softcover reprint of the original 1st ed. 2014
Pages: 656
Product dimensions: 6.10(w) x 9.25(h) x 0.05(d)

Table of Contents

Preface

Chapter 1: High-Efficiency Silicon Solar Cells – Materials and Devices Physics
Chapter 2: Luminescent Study of Recombination Processes in the Single-Crystal Silicon and Silicon Structures Fabricated Using High-Efficiency Solar Cells Technology
Chapter 3: Emerging PV nanomaterials: capabilities versus recombination losses
Chapter 4: Chalcopyrite quantum wells and dots in solar-cell applications
Chapter 5: Nanostructured Silicon-Based Photovoltaic Cells
Chapter 6: High band gap silicon nanocrystal solar cells: Device fabrication, characterization and modeling
Chapter 7: Thiophene-based copolymers synthesized by electropolymerization for application as hole transport layer in organic photovoltaics cells
Chapter 8: Molecular engineering of efficient dyes for p-type semiconductor sensitization
Chapter 9: Dye-Doped Polysiloxane Rubbers for Luminescent Solar Concentrator Systems
Chapter 10: Engineering FRET-based Solar Cells: Manipulation of Energy and Electron Transfer Processes in a Light Harvesting Assembly
Chapter 11: Chlorophyll-Derived-, Cyclic-Tetrapyrrole-Based Purpurins as Efficient Near-Infrared Absorption Donor Materials for Dye-Sensitized and Organic Solar Cells
Chapter 12: Hybrid Solar Cells: Materials, Interfaces, and Devices
Chapter 13: Implication of porous TiO2 nanoparticles in PEDOT: PSS photovoltaic devices
Chapter 14: Light trapping for solar cells
Chapter 15: Anti-reflective silicon oxide p-layer for thin-film silicon solar cells
Chapter 16: Design guidelines for high efficiency plasmonics silicon solar cells
Chapter 17: Plasmon-Enhanced Excitonic Solar Cells
Chapter 18: Interfaces in III-V high efficiency solar cells
Chapter 19: Broadband and Omnidirectional Anti-Reflection Coating for III/V Multi-Junction Solar Cells
Chapter 20: Radiation Effects of Space Solar Cells
Chapter 21: Thin-film III-V solar cells using epitaxial lift-off

Index

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews