Higher Plant Cell Respiration

Higher Plant Cell Respiration

Paperback(Softcover reprint of the original 1st ed. 1985)

$159.00
View All Available Formats & Editions
Use Standard Shipping. For guaranteed delivery by December 24, use Express or Expedited Shipping.

Product Details

ISBN-13: 9783642701030
Publisher: Springer Berlin Heidelberg
Publication date: 11/25/2011
Series: Encyclopedia of Plant Physiology , #18
Edition description: Softcover reprint of the original 1st ed. 1985
Pages: 524
Product dimensions: 6.69(w) x 9.61(h) x 0.04(d)

Table of Contents

1 Preparation of Plant Mitochondria, Criteria for Assessement of Mitochondrial Integrity and Purity, Survival in Vitro.- 1 Introduction.- 2 General Considerations for the Isolation of Intact Mitochondria.- 3 Large-Scale Preparation of Washed Mitochondria.- 3.1 Reagents.- 3.2 Procedure for Potato Tuber Mitochondria.- 4 Assessment of Mitochondrial Integrity.- 4.1 Spectrophotometric Assay for Succinate: Cytochrome c Oxidoreductase.- 4.2 KCN-Sensitive-Ascorbate-Cytochrome c-Dependent O2 Uptake.- 5 Control of Mitochondrial Purity.- 6 Purification of Plant Mitochondria.- 6.1 Purification on Sucrose Gradients.- 6.2 Purification on Percoll Gradients.- 6.2.1 Purification of Mitochondria from Potato Tubers.- 6.2.2 Purification of Mitochondria from Pea Leaves.- 6.2.3 Properties of Percoll-Purified Mitochondria.- 7 Concluding Remarks.- References.- 2 Molecular Organization and Expression of the Mitochondrial Genome of Higher Plants.- 1 Introduction.- 2 Physicochemical Characterization.- 2.1 Buoyant Density and Melting Point.- 2.2 Direct Observation of mtDNA Molecules by Electron Microscopy.- 2.3 C0t Curves and Kinetic Complexity.- 2.4 Detection of Discrete Circular mtDNA Molecules by Gel Electrophoresis.- 3 Restriction Analysis and Molecular Cloning.- 3.1 Restriction Patterns.- 3.2 Molecular Cloning.- 3.3 Physical Map(s) of mtDNA.- 4 Identified Mitochondrial Genes.- 4.1 rRNA Genes.- 4.2 tRNA Genes.- 4.3 Protein Genes.- 5 Concluding Remarks.- References.- 3 Plant Mitochondrial Lipids: Structure, Function and Biosynthesis.- 1 Introduction to Lipid Structures.- 2 Composition of Mitochondrial Membranes.- 2.1 Content of Acyl and Other Lipids.- 2.2 Comparison with Other Plant Membranes.- 3 Metabolism.- 3.1 Sources of Precursors for Lipid Synthesis.- 3.2 Mitochondrial Phospholipid Synthesis.- 3.3 Degradative Enzymes.- 4 Functional Aspects of Lipids.- 4.1 Membrane Structure and function.- 4.2 Changes in Mitochondrial Lipids.- 5 Conclusion.- References.- 4 Plant Mitochondrial Cytochromes.- 1 Introduction.- 2 Cytochrome Estimation.- 3 Mitochondrial Cytochromes in Higher Plants.- 3.1 The c Cytochromes.- 3.1.1 Cytochrome c.- 3.1.2 Cytochrome c1.- 3.2 The b Cytochromes.- 3.2.1 The Various Cytochromes b.- 3.2.2 The Cytochrome b-c1 Complex.- 3.2.3 Cytochromes b of the External Mitochondrial Membrane.- 3.3 The a Cytochromes.- 4 Influence of the Membrane Potential on the Redox States of the Mitochondrial Cytochromes.- 5 Miscellany.- 6 Cytochromes in the Respiratory Chain of Higher Plant Mitochondria.- References.- 5 The Outer Membrane of Plant Mitochondria.- 1 Perspective.- 2 Isolation of Mitochondrial Membranes.- 3 Lipid Composition of the Mitochondrial Outer Membrane.- 3.1 Lipid Classes.- 3.2 Fatty Acid Composition: Temperature Modulation.- 3.3 Lipid Phase Transitions.- 4 Enzymes of the Mitochondrial Outer Membrane.- 4.1 The NADH: Cytochrome c Oxidoreductase System.- 4.1.1 Possible Functions of the Outer Membrane Redox Chain.- 5 Channel-Formers of the Outer Mitochondrial Membrane.- 5.1 Structural Evidence for the Existence of Pores.- 5.2 Trypsin-Insensitive Polypeptides of the Plant Membrane.- 5.3 The Pore-Forming Polypeptides.- 5.4 Structure and Function of the Channels.- 5.4.1 Model from X-ray Diffraction.- 5.4.2 Structure from Electron Microscopy.- 5.4.3 Mechanism of Ion Selectivity.- 5.5 Speculation on a Regulatory Role for Outer Membrane Channels.- References.- 6 Organization of the Respiratory Chain and Oxidative Phosphorylation.- 1 Introduction.- 2 Organization of Respiratory Components.- 2.1 The Basic Functional Units.- 2.1.1 Complex I, NADH Dehydrogenase.- 2.1.2 Complex II, Succinate Dehydrogenase.- 2.1.3 Complex III, the Cytochrome bc1 Complex.- 2.1.4 Complex IV, Cytochrome Oxidase.- 2.1.5 The Alternative Oxidase.- 2.1.6 The External NADH Dehydrogenase.- 3 Connection Between the Functional Units.- 3.1 The Sidedness of the Reactions of the Alternative Oxidase, Succinate Dehydrogenase and the External NADH Dehydrogenase.- 3.2 The Role of Ubiquinone as a Mobile Redox “Pool”.- 3.2.1 Mobility Between Components.- 3.2.2 The Role of Ubiquinone in Providing Mobility.- 3.2.3 The Relation of the Quinone Pool to Control of Electron Flow Through the Cytochrome and Alternative Oxidases.- 3.3 Some Instances Where Ideal Q-Pool Behaviour Is Not Observed.- 4 Oxidative Phosphorylation.- 4.1 Background.- 4.2 Proton Electrochemical Gradient.- 4.2.1 Steady-State Ion Distribution.- 4.2.2 Spectroscopic Probes.- 4.2.3 Ion-Specific Electrodes.- 4.2.4 Magnitude of ? p and its Response to the Metabolic State.- 4.3 Mechanism for Generating ? p.- 4.3.1 H+/ORatios.- 4.3.2 H+/Site Ratios.- 4.3.3 H+/ATP Ratios.- 4.4 Thermodynamic Competence of ? p.- 4.5 Is ?p an Obligate Intermediate?.- References.- 7 The Oxidation of NADH by Plant Mitochondria.- 1 Introduction.- 2 NADH Dehydrogenases Oxidizing Exogenous NADH.- 2.1 The Outer Membrane NADH Dehydrogenase.- 2.2 The Inner Membrane NADH Dehydrogenase.- 2.2.1 Location of the Dehydrogenase.- 2.2.2 Nature of the Redox Components and Relationship with the Respiratory Chain.- 2.2.3 Inhibitors of the External Dehydrogenase.- 2.2.4 Specificity of the External NADH Dehydrogenase for the Nicotin-amide Adenine Dinucleotide.- 2.2.5 Regulation of Electron Flux Through the External NADH Dehydrogenase.- 2.2.6 The Physiological Significance of Regulation of the NADH Dehydrogenase.- 3 NADH Dehydrogenases Oxidizing Endogenous NADH.- 3.1 Rotenone-Sensitive Oxidation of Endogenous NADH.- 3.1.1 Redox Components Associated with the Dehydrogenase.- 3.1.2 Regulation of Electron Flow Through the Rotenone-Sensitive Dehydrogenase.- 3.2 Rotenone-Resistant Oxidation of Endogenous NADH.- 3.2.1 Relationship to the Terminal Oxidases.- 3.2.2 Relationship to the NAD+-Linked Krebs Cycle Dehydrogenases.- References.- 8 The Cyanide-Resistant Pathway of Plant Mitochondria.- 1 Introduction.- 2 The Measure of Cyanide Resistance.- 3 The Dependence on Respiratory Substrates.- 4 The Inhibition of Electron Transport.- 4.1 Inhibitors of the Flavoprotein Pathway.- 4.2 Inhibitors of the Cytochrome Pathway.- 4.3 Inhibitors of the Alternative Pathway.- 4.4 Interactions Between Inhibitors.- 5 The Link with Energy Transduction.- 5.1 Oxidative Phosphorylation.- 5.2 Membrane Potential and Proton Gradient.- 6 The Structure of the Alternative Pathway.- 6.1 Branch Point of the Alternative Pathway.- 6.2 Other Components.- 7 The Functional Organization of the Alternative Pathway.- 7.1 Topographical Organization.- 7.2 Compartmentation.- 7.2.1 Ubiquinone.- 7.2.2 Pyridine Nucleotides.- 7.3 Organization of the Alternative Pathway.- 8 The Alternative Pathway Oxidase.- 8.1 Flavoprotein Hypothesis.- 8.2 Excess Oxidase Hypothesis.- 8.3 Cytochrome b7 Hypothesis.- 8.4 Nonheme Iron Protein Hypothesis.- 8.5 Ubiquinone (Q-Cycle) Hypothesis.- 8.6 Quinol Oxidase Hypothesis.- 8.7 Lipoxygenase Hypothesis.- 8.8 Free Radical Hypothesis.- 8.9 Conclusions.- 9 The Distribution of Electrons Between the Two Pathways.- 9.1 Some Definitions and Remarks.- 9.2 Distribution of Electrons Between Pathways.- 9.2.1 Bahr and Bonner’s Method.- 9.2.2 De Troostembergh and Nyns’s Method.- 9.2.3 ADP/O Ratio Method.- 9.3 Mechanism of Electron Distribution.- 10 The Biogenesis of the Alternative Pathway.- 11 The Significance of the Alternative Pathway.- 12 Conclusion.- References.- 9 Membrane Transport Systems of Plant Mitochondria.- 1 Introduction.- 2 Structural and Osmotic Properties.- 3 Techniques of Measuring Transport.- 4 Transport of Inorganic Ions and Acetate.- 4.1 Background.- 4.2 Mechanisms of Passive Transport.- 4.3 Energy-Linked Transport.- 4.3.1 Salt Efflux.- 4.3.2 Salt Influx.- 5 Transport of Organic Metabolites and Cofactors.- 5.1 General Characteristics.- 5.2 Monocarboxylate Transport.- 5.3 Dicarboxylate Transport.- 5.4 Tricarboxylate Transport.- 5.5 Amino Acid Transport.- 5.6 Nucleotide Transport.- 6 Conclusions.- References.- 10 The Tricarboxylic Acid Cycle in Plant Mitochondria: Its Operation and Regulation.- 1 Introduction.- 2 Control.- 2.1 Adenylate Enery.- 2.2 Substrate Supply.- 2.3 Enzyme Activity.- 2.3.1 Enzyme Turnover.- 2.3.2 Pyruvate Dehydrogenase.- 2.3.3 Citrate Synthase.- 2.3.4 Isocitrate Dehydrogenase.- 2.3.5 Oxoglutarate Dehydrogenase.- 2.3.6 Succinyl Coenzyme A Synthetase.- 2.3.7 Succinate Dehydrogenase.- 2.3.8 Fumarase.- 2.3.9 Malate Dehydrogenase and Malic Enzyme.- 3 Fatty Acid Oxidation.- 3.1 Glyoxysome — Mitochondria Interactions.- 4 Malate Oxidation: Malate Dehydrogenase or NAD-Malic Enzyme?.- 5 Glycine Oxidation.- 6 Physiological Control of the TCA Cycle.- 7 List of Enzymes.- References.- 11 Leaf Mitochondria (C3 + C4 + CAM).- 1 Introduction.- 2 Effects of Light on Dark Respiration.- 3 Preparation of Leaf Mitochondria.- 3.1 Introduction.- 3.2 Development of Preparation Procedures.- 3.2.1 C3 Plants.- 3.2.2 CAM Plants.- 3.2.3 C4 Plants.- 4 Properties of Isolated Leaf Mitochondria.- 4.1 Purity and Intactness.- 4.2 Composition.- 5 Special Functions of Leaf Mitochondria — Role in Photorespiration.- 5.1 Photorespiration.- 5.2 Transport of Photorespiratory Metabolites.- 5.3 Glycine Decarboxylase.- 5.4 Serine Hydroxymethyltransferase.- 5.5 Assay Methods for Glycine Decarboxylase.- 5.6 Inhibition of Glycine Metabolism.- 5.7 Reoxidation of NADH.- 5.8 Regulation of Glycine Oxidation.- 5.9 Ammonia Refixation.- 6 Special Functions of Leaf Mitochondria — Role Relative to Decarboxylations in the C4 Cycle.- 6.1 Introduction.- 6.2 PEP-Carboxykinase Types.- 6.3 NADP-Malic Enzyme Types.- 6.4 NAD-Malic Enzyme Types.- 6.4.1 NAD-Malic Enzyme — A Mitochondrial Enzyme.- 6.4.2 Properties of NAD-Malic Enzyme.- 6.4.3 Function in NAD-ME Type C4 Plants.- 6.4.4 Function in ME Type CAM Plants.- 6.5 Transport in Mitochondria Relative to C4 and CAM Photosynthesis.- 6.6 Abundance and Ultrastructure of Mitochondria Relative to C4 Photosynthesis.- References.- 12 Starch and Sucrose Degradation.- 1 Introduction.- 2 Properties of Starch and Sucrose.- 2.1 Starch.- 2.2 Sucrose.- 3 Degradation of Starch and Sucrose.- 4 Relation Between Carbohydrate Mobilization and Respiration in Various Plant Tissues.- 4.1 Tissues Having a High Respiratory Carbohydrate Consumption.- 4.1.1 Tissues Where Starch is Almost Completely Respired to CO2.- 4.1.2 Cell Culture and Callus.- 4.1.3 Root Differentiation.- 4.2 Tissues Where Sucrose is Metabolized but Diverted to an Increasing Extent into Storage Products.- 4.2.1 Development of Lipid-Storing Seeds.- 4.2.2 Starch-Storing Tubers and Seeds.- 4.2.3 Storage of Sugar in Root Tubers.- 4.3 Tissues in Which Starch is Being Mobilized Primarily for Conversion to Sucrose.- 4.4 Photosynthetic Tissues with a Rapid Alteration Between Synthesis and Mobilization of Carbohydrate.- 4.4.1 Photosynthetic Metabolism.- 4.4.2 Sucrose Degradation.- 4.4.3 Starch Degradation.- 4.4.4 Carbohydrate Mobilization in CAM Plants.- 5 General Features of the Control of Carbohydrate Respiration.- 5.1 Control of Mobilization.- 5.1.1 Coarse Control of Enzymes.- 5.1.2 Multiple Forms of Enzymes.- 5.1.3 Compartmentation of Starch.- 5.1.4 Compartmentation of Sucrose.- 5.1.5 Fine Control of Enzymes.- 5.1.5.1 Starch.- 5.1.5.2 Sucrose.- 5.2 Control of the Utilization of Hexose P.- 5.2.1 Coarse Control of Hexose Phosphate Metabolism.- 5.2.2 Hexose Phosphate Metabolism and Compartmentation.- 5.2.3 Fine Control of Hexose Phosphate Metabolism.- 5.2.3.1 Phosphofructokinase.- 5.2.3.2 Fructose 2,6-Bisphosphate.- 5.2.3.3 Pyrophosphate: Fructose 6-phosphate Phosphotransferase.- 5.2.3.4 Pyrophosphate.- 5.2.3.5 Nonrespiratory Use of Hexose Phosphate.- 5.2.4 A Possible Integration of Pathways.- References.- 13 The Organization of Glycolysis and the Oxidative Pentose Phosphate Pathway in Plants.- 1 Introduction.- 2 Reactions of Glycolysis.- 2.1 Enzymes of Glycolysis.- 2.2 Pyrophosphate: Fructose 6-Phosphate 1-Phosphotransferase.- 3 Reactions of the Oxidative Pentose Phosphate Pathway.- 3.1 Enzymes of the Pathway.- 3.2 The Nonoxidative Reactions of the Pathway.- 4 Location and Inter-relationship of Glycolysis and the Oxidative Pentose Phosphate Pathway.- 4.1 Carbohydrate Oxidation in the Cytosol.- 4.2 Carbohydrate Oxidation in Plastids.- 4.2.1 Chloroplasts.- 4.2.2 Plastids Involved in Massive Synthesis of Fat.- 4.2.3 Other Plastids.- References.- 14 Respiration in Intact Plants and Tissues: Its Regulation and Dependence on Environmental Factors, Metabolism and Invaded Organisms.- 1 Introduction.- 2 Respiration Associated with Growth, Maintenance and Ion Uptake.- 2.1 Is There a Justification for the Concept of Growth Respiration?.- 2.1.1 Definitions and Basic Assumptions.- 2.1.2 Experimental Approaches.- 2.1.3 Experimentally Derived Values for YG and YEG Compared with Theoretical Values.- 2.1.4 Some Experimentally Derived Values and Their Significance.- 2.1.5 Summarizing Remarks.- 2.2 Respiration as an Aspect of the C-Economy of a Plant.- 3 Cyanide-Resistant Respiration: Its Distribution and Physiological Significance.- 3.1 Cyanide-Resistant Respiration in Vivo: Some Methodological Aspects.- 3.1.1 Cyanide-Resistant Oxygen Uptake.- 3.1.2 Cyanide-Sensitive Oxygen Uptake.- 3.1.3 SHAM-Sensitive Oxygen Uptake.- 3.1.4 The Determination of the Activity of the Alternative Path.- 3.2 Cyanide-Resistant Respiration and Heat Production.- 3.3 Cyanide-Resistance and Ion Uptake: “Anion Respiration”.- 3.4 The Alternative Path, Fruit Ripening, Ethylene Production and the Synthesis of Stress Metabolites.- 3.5 Cyanide-Resistance as a Mechanism to Tolerate Cyanide in the Environment.- 3.6 The Alternative Path in Relation to Anaplerotic Functions of Mitochondria.- 3.7 The “Energy Overflow” Model.- 3.8 The Alternative Path and an Increased Demand for Metabolic Energy.- 4 Regulatory Aspects of Respiration in Vivo.- 4.1 The Regulation of the Activity of the Cytochrome and the Alternative Pathways.- 4.2 The Regulation of Glycolysis.- 4.3 Regulation by the Concentration or Supply of Respiratory Substrates.- 4.4 Toward a Model of the Regulation of Respiration by Substrates and Adenylates.- 5 Respiration and Its Relation to Other Aspects of Metabolism.- 5.1 Ion Uptake.- 5.2 The “Movement” of Plants.- 5.3 Flowering.- 6 Respiration and Its Dependence on Environmental Factors.- 6.1 Effects of Light.- 6.1.1 Leaf Respiration After a Period of Photosynthesis.- 6.1.2 Respiration as Affected by Light Intensity During Growth.- 6.1.3 Respiration as Affected by the Integrated Level of Radiation.- 6.1.4 Further Remarks on Effects of Light.- 6.2 Effects of Temperature.- 6.2.1 The Q10 of Respiration.- 6.2.2 Transient Effects of Temperature on Respiration.- 6.2.3 Effects of Chilling.- 6.2.4 Effects of Supra-Optimal Temperatures.- 6.2.5 Temperature as an Ecological Factor.- 6.3 Effects of Salinity and Water Stress.- 6.4 Mineral Nutrition.- 7 Respiration and Its Relation to Yield and the Plasticity of the Individual.- 7.1 The Negative Correlation Between Respiration and Yield or Growth Rate.- 7.2 Are There Penalties, Associated with Slow Respiration Lines?.- 8 Developmental Aspects.- 8.1 Germination.- 8.2 Root and Leaf Development.- 8.3 Senescence.- 8.4 Fruit Ripening.- 9 Host-Parasite and Symbiotic Associations.- 9.1 Host-Parasite Associations.- 9.2 Symbiotic Systems.- 10 Concluding Remarks.- References.- Author Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews