Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries

Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries

by Zhen-Gang Ji


View All Available Formats & Editions
Eligible for FREE SHIPPING
  • Want it by Wednesday, September 26?   Order by 12:00 PM Eastern and choose Expedited Shipping at checkout.


Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries by Zhen-Gang Ji

This hands-on reference illustrates the principles, basic processes, mathematical descriptions, and practical applications of modeling surface waters. It discusses hydrodynamics, sediment processes, toxic fate and transport, and water quality and eutrophication in rivers, lakes, estuaries, and coastal waters. There has been great progress in mathematical modeling that simulates surface waters numerically. Modeling is becoming a powerful tool, and this reference gets readers up to speed quickly. Practically organized to facilitate quick reference, Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries: Focuses on how to solve environmental problems in surface waters, Uses a practical, application-oriented approach: chapters begin with an introduction of basic concepts, proceed to discussions of physical, chemical, and/or biological processes and their mathematical representations, and conclude with real-life case studies, Has a companion CD that includes a modeling package and electronic files of numerical models, case studies, and model results, plus other materials to help readers use the models and tools, Features case studies that show how to use models appropriate to environmental and water resources management, Provides detailed information on how to use the three-dimensional Environmental Fluid Dynamics Code (EFDC) model supported by the EPA.

This is a must-have reference for environmental scientists, engineers, geologists, chemists, and government regulators, as well as other water quality professionals. It is also an excellent text for graduate students in fields that encompass hydrodynamics and water quality.

About the Author:
Zhen-Gang(Jeff) Ji, PhD, DES, PE, is an oceanographer and numerical modeler with the Minerals Management Service

Product Details

ISBN-13: 9781118877159
Publisher: Wiley
Publication date: 07/05/2017
Pages: 612
Product dimensions: 8.60(w) x 11.10(h) x 1.40(d)

About the Author

Zhen-Gang (Jeff) Ji, PHD, DES, PE, has more than twenty years of professional experience in surface water modeling and model development. His expertise includes hydrodynamics, wave simulation, eutrophication, toxic process, and sediment transport. He has developed and applied state-of-the-art hydrodynamic models and water quality models to the simulation of rivers, lakes, estuaries, and coastal waters. Currently, Dr. Ji is an oceanographer and numerical modeler with the Minerals Management Service.

Read an Excerpt

Click to read or download

Table of Contents

Foreword     xiii
Preface     xv
Acknowledgments     xvii
Introduction     1
Overview     1
Understanding Surface Waters     4
Modeling of Surface Waters     7
About This Book     11
Hydrodynamics     13
Hydrodynamic Processes     14
Water Density     14
Conservation Laws     16
Advection and Dispersion     20
Mass Balance Equation     25
Atmospheric Forcings     27
Coriolis Force and Geostrophic Flow     32
Governing Equations     35
Basic Approximations     35
Equations in Cartesian Coordinates     38
Vertical Mixing and Turbulence Models     48
Equations in Curvilinear Coordinates     52
Initial Conditions and Boundary Conditions     58
Temperature     62
Heatflux Components     65
Temperature Formulations     73
Hydrodynamic Modeling     77
Hydrodynamic Parameters and Data Requirements     78
Case Study I: Lake Okeechobee     82
Case Study II: St. Lucie Estuary and Indian River Lagoon     98
Sediment Transport     113
Overview     113
Properties of Sediment     114
Problems Associated with Sediment     117
Sediment Processes     119
Particle Settling     120
Horizontal Transport of Sediment     122
Resuspension and Deposition     126
Equations for Sediment Transport     128
Turbidity and Secchi Depth     130
Cohesive Sediment     134
Vertical Profiles of Cohesive Sediment Concentrations     136
Flocculation     138
Settling of Cohesive Sediment     139
Deposition of Cohesive Sediment     143
Resuspension of Cohesive Sediment     145
Noncohesive Sediment     149
Shields Diagram     149
Settling and Equilibrium Concentration     152
Bed Load Transport     155
Sediment Bed     156
Characteristics of Sediment Bed     157
A Model for Sediment Bed     159
Wind Waves     162
Wave Processes     163
Wind Wave Characteristics     168
Wind Wave Models     170
Combined Flows of Wind Waves and Currents     172
Case Study: Wind Wave Modeling in Lake Okeechobee     174
Sediment Transport Modeling     179
Sediment Parameters and Data Requirements     180
Case Study I: Lake Okeechobee     182
Case Study II: Blackstone River     191
Pathogens and Toxics     201
Overview     201
Pathogens     203
Bacteria, Viruses, and Protozoa     204
Pathogen Indicators     206
Processes Affecting Pathogens     208
Toxic Substances     210
Toxic Organic Chemicals     213
Metals     214
Sorption and Desorption     216
Fate and Transport Processes     220
Mathematical Formulations     220
Processes Affecting Fate and Decay     223
Contaminant Modeling     229
Case Study I: St. Lucie Estuary and Indian River Lagoon     230
Case Study II: Rockford Lake     239
Water Quality and Eutrophication     247
Overview     248
Eutrophication     248
Algae     250
Nutrients     253
Dissolved Oxygen     261
Governing Equations for Water Quality Processes     262
Algae      274
Algal Biomass and Chlorophyll     275
Equations for Algal Processes     277
Algal Growth     279
Algal Reduction     285
Silica and Diatom     289
Periphyton     292
Organic Carbon     294
Decomposition of Organic Carbon     296
Equations for Organic Carbon     296
Heterotrophic Respiration and Dissolution     298
Phosphorus     299
Equations for Phosphorus State Variables     302
Phosphorus Processes     305
Nitrogen     308
Forms of Nitrogen     309
Equations for Nitrogen State Variables     311
Nitrogen Processes     317
Dissolved Oxygen     322
Biochemical Oxygen Demand     325
Processes and Equations of Dissolved Oxygen     328
Effects of Photosynthesis and Respiration     331
Reaeration     332
Chemical Oxygen Demand     336
Sediment Fluxes     336
Sediment Diagenesis Model     338
Depositional Fluxes     344
Diagenesis Fluxes     347
Sediment Fluxes     348
Silica      365
Coupling with Sediment Resuspension     366
Submerged Aquatic Vegetation     368
Introduction     369
Equations for a SAV Model     371
Coupling with the Water Quality Model     378
Water Quality Modeling     385
Model Parameters and Data Requirements     387
Case Study I: Lake Okeechobee     390
Case Study II: St. Lucie Estuary and Indian River Lagoon     406
External Sources and TMDL     417
Point Sources and Nonpoint Sources     417
Atmospheric Deposition     420
Wetlands and Groundwater     424
Wetlands     424
Groundwater     427
Watershed Processes and TMDL Development     430
Watershed Processes     430
Total Maximum Daily Load (TMDL)     433
Mathematical Modeling and Statistical Analyses     437
Mathematical Models     437
Numerical Models     440
Model Selection     444
Spatial Resolution and Temporal Resolution     447
Statistical Analyses     449
Statistics for Model Performance Evaluation     450
Correlation and Regression     452
Spectral Analysis      454
Empirical Orthogonal Function (EOF)     457
EOF Case Study     460
Model Calibration and Verification     466
Model Calibration     467
Model Verification and Validation     470
Sensitivity Analysis     471
Rivers     473
Characteristics of Rivers     473
Hydrodynamic Processes in Rivers     477
River Flow and the Manning Equation     477
Advection and Dispersion in Rivers     481
Flow over Dams     482
Sediment and Water Quality Processes in Rivers     485
Sediment and Contaminants in Rivers     485
Impacts of River Flow on Water Quality     486
Eutrophication and Periphyton in Rivers     488
Dissolved Oxygen in Rivers     489
River Modeling     492
Case Study I: Blackstone River     493
Case Study II: Susquehanna River     503
Lakes and Reservoirs     509
Characteristics of Lakes and Reservoirs     509
Key Factors Controlling a Lake     510
Vertical Stratification     511
Biological Zones in Lakes     514
Characteristics of Reservoirs     515
Lake Pollution and Eutrophication     519
Hydrodynamic Processes     521
Inflow, Outflow, and Water Budget     522
Wind Forcing and Vertical Circulations     525
Seasonal Variations of Stratification     527
Gyres     530
Seiches     532
Sediment and Water Quality Processes in Lakes     538
Sediment Deposition in Reservoirs and Lakes     538
Algae and Nutrient Stratifications     540
Dissolved Oxygen Stratifications     543
Internal Cycling and Limiting Functions in Shallow Lakes     546
Lake Modeling     550
Case Study I: Lake Tenkiller     551
Case Study II: Lake Okeechobee     560
Estuaries and Coastal Waters     567
Introduction     567
Tidal Processes     572
Tides     572
Tidal Currents     576
Harmonic Analysis     580
Hydrodynamic Processes in Estuaries     584
Salinity     585
Estuarine Circulation     586
Stratifications of Estuaries     588
Flushing Time     593
Sediment and Water Quality Processes in Estuaries     600
Sediment Transport under Tidal Forcing      600
Flocculation of Cohesive Sediment and Sediment Trapping     601
Eutrophication in Estuaries     604
Estuarine and Coastal Modeling     607
Open Boundary Conditions     609
Case Study I: Morro Bay     613
Case Study II: St. Lucie Estuary and Indian River Lagoon     626
Environmental Fluid Dynamics Code     635
Overview     635
Hydrodynamics     636
Sediment Transport     637
Toxic Chemical Transport and Fate     637
Water Quality and Eutrophication     637
Numerical Schemes     638
Documentation and Application Aids     639
Conversion Factors     641
Contents of Electronic Files     645
Channel Model     646
St. Lucie Estuary and Indian River Lagoon Model     646
Lake Okeechobee Environmental Model     646
Documentation and Utility Programs     647
Bibliography     649
Index     671

What People are Saying About This

From the Publisher

"On the whole, the topics are well organized, the prose is easy to read and understand, the style is lucid, and there is a wealth of information reflecting the knowledge and experience of the author. The book will also be useful to practicing water and environmental engineers.." (Journal of Hydrologic Engineering, August 2009)“

As a water quality professional, I found the book to be helpful and a very informative reference. It provides much needed information for solving practical environmental water resources problems through modeling. It would also be a great addition to any university library.” (Journal of the American Water Resources Association, July 2009)

“This hands-on reference illustrates the principles, basic processes, mathematical descriptions, and practical applications of modeling surface waters.” (APADE, 2009)

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews