Photosynthesis I: Photosynthetic Electron Transport and Photophosphorylation

Photosynthesis I: Photosynthetic Electron Transport and Photophosphorylation

Paperback(Softcover reprint of the original 1st ed. 1977)

$159.00
View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Thursday, January 24

Product Details

ISBN-13: 9783642665073
Publisher: Springer Berlin Heidelberg
Publication date: 12/08/2011
Series: Encyclopedia of Plant Physiology Series , #5
Edition description: Softcover reprint of the original 1st ed. 1977
Pages: 731
Product dimensions: 6.69(w) x 9.61(h) x 0.06(d)

Table of Contents

I. History.- Photosynthesis 1950–75: Changing Concepts and Perspectives.- A. Introduction.- B. Photosynthesis Research at Midcentury.- C. Research Past Midcentury: Some Major Advances.- D. CO2 Assimilation: Experiments with Whole Cells.- E. Evidence for CO2 Assimilation by Isolated Chloroplasts.- F. Investigations of Light Reactions of Photosynthesis: Experimental Advantages of Chloroplasts Over Whole Cells.- G. Discovery of Photosynthetic Phosphorylation.- H. The Concept of a Light-Induced Electron Flow.- I. Noncyclic Photophosphorylation.- J. Role of Cyclic Photophosphorylation: Early Views.- K. Physical Separation of Light and Dark Phases of Photosynthesis in Chloroplasts.- L. Ferredoxins in Chloroplasts and Bacteria.- M. Role of Ferredoxin in Noncyclic Photophosphorylation.- N. Ferredoxin as the Physiological Catalyst of Cyclic Photophosphorylation.- O. Stoichiometry and Regulation of Ferredoxin-Catalyzed Photophosphorylations.- P. Other Ferredoxin-Dependent Reactions in Photosynthetic Cells.- Q. Multiple Ferredoxins: Soluble and Bound.- R. Photosynthetic Electron Carriers.- S. Two Photosystems in Plant Photosynthesis: Origins of a Concept.- T. Two Photosystems: Facts, Hypotheses, and Dogma.- U. Concluding Remarks.- References.- II. Electron Transport.- 1. General 1 a. Physical Aspects of Light Harvesting, Electron Transport and Electrochemical Potential Generation in Photosynthesis of Green Plants.- A. Introduction.- B. Antennae.- I. Physically Different Types of Chlorophylls in Chloroplasts.- II. Resonant Energy Transfer.- III. Distinctive Properties of Antennae Systems I and II.- IV. Size and Interaction of the Antennae Systems.- V. Protective Reactions.- VI. Structure.- C. Electron Transport.- I. Photochemical Reactions.- II. Non-Photochemical Components.- D. Electrochemical Potential Generation.- I. The Generation of an Electric Potential.- II. Proton Translocation.- References.- 1b. Electron Transport in Chloroplasts.- A. General.- B. Photosystem II.- I. The Oxidizing Side of PS II.- II. The Reaction Center Complex of PS II.- III. The Reducing Side of PS II.- C. Photosystem I.- I. The Primary Acceptor of PS I.- II. The Reducing Side of PS I.- III. The Oxidizing Side of PS I.- References.- 2. Porphyrins, Chlorophyll, and Photosynthesis.- A. Introduction.- B. Structure.- C. Function.- D. Evolution.- E. Summary.- References.- 3. Light Conversion Efficiency in Photosynthesis.- A. Basic Principles.- B. The Maximum Efficiency of Photosynthesis: Quantum Yields Under Optimum Conditions.- C. ATP Production and Utilization.- D. Quantum Yields of Growing Cells and Photosynthetic Productivity Under Natural Conditions.- References.- 4. P-700.- A. General.- B. Optical Properties.- C. Oxidation-Reduction.- D. Models.- E. Localization of P-700.- F. Orientation of P-700.- G. Oxidation of P-700.- H. Reduction of P-700.- References.- 5. Chlorophyll Fluorescence: A Probe for Electron Transfer and Energy Transfer.- A. Introduction.- B. Fluorescence Yield and Electron Transport.- I. A (Q).- II. C-550.- III. P-680.- IV. The Back-Reaction.- C. The Photochemical Model.- I. Photosystem II.- II. Photosystem I.- III. The Photochemical Apparatus.- IV. Energy Distribution Between PS I and PS II.- D. Appendix.- References.- 6. Electron Paramagnetic Resonance Spectroscopy.- A. Introduction.- B. EPR Techniques.- C. EPR Studies in Photosynthesis.- I. Bacterial Photosynthesis.- II. Signals in Photosystem II (PS II).- III. Signals in Photosystem I (PS I).- IV. Spin Labels.- D. Conclusion.- References.- 7. Primary Electron Acceptors.- A. Chloroplast Photosystem I.- I. Background.- II. Electron Paramagnetic Resonance (EPR) Studies of Bound Iron-Sulfur Proteins.- III. Flash Kinetic Spectroscopy of P-430.- IV. Relationship of P-430 to Bound Iron-Sulfur Protein.- B. Chloroplast Photosystem II.- I. X-320.- II. C-550.- III. On the Chemical Identity of the Photosystem II Primary Electron Acceptor.- References.- 8. Oxygen Evolution and Manganese.- A. Introduction.- B. Photosystem II.- C. Kinetic Model of O2 Production.- D. Interconversion of S-States in the Dark.- E. Turnover Reactions of Photosystem II.- F. Phenomena Related to the S-States.- G. Chemical Treatments that Reversibly Affect the O2 Evolving Site.- H. Localization of the Oxygen-Evolving Site.- References.- 9. Ferredoxin.- A. Introduction.- B. Extraction and Purification.- C. Assay.- D. Occurrence and Biosynthesis.- E. Properties.- F. Nature of the Active Center.- G. Stability.- H. Biological Function.- I. Immunological Studies.- J. Homology in the Primary Structures.- References.- 10. Flavodoxin.- A. Biological Properties.- B. Chemical Properties.- References.- 11. Flavoproteins.- A. Introduction.- B. Isolation and Physico-Chemical Properties of the Chloroplast Flavoprotein, Ferre doxin-NADP+ Reductase,.- C. Kinetic Properties of Ferredoxin-NADP+ Reductase.- D. Multiple Forms of the Chloroplast Flavoprotein.- References.- 12. Cytochromes.- A. Introduction.- B. Isolated Higher Plant Cytochromes.- C. Isolated Algal Cytochromes.- D. Cytochrome Function in Electron Transport.- References.- 13. Plastoquinone.- A. Introduction and Properties.- B. Experiments with Extracted Chloroplasts.- C. Reactions of Endogenous Plastoquinone as Secondary Electron Acceptor.- D. Identity of the Primary Electron Acceptor of Photosystem II.- E. Specific Inhibitors of Plastoquinone.- References.- 14. Plastocyanin.- A. Distribution and Localization.- B. Extraction and Purification.- C. Molecular Properties.- D. Function in Photosynthetic Electron Transport System.- References.- 15. Artificial Acceptors and Donors.- A. Introduction.- B. General Aspects.- C. Electron Acceptors.- D. Electron Donors.- E. Compounds Accepting and Donating Electrons—Cyclic Electron Transport and Bypasses.- F. The Topography of the Chloroplast Membrane and Artificial Energy Conservation 261 References.- References.- 16. Inhibitors of Electron Transport.- A. Introduction.- B. Description of Inhibitors.- I. Inhibitors that Act on Water-Oxidizing Side of Photosystem II.- II. Inhibitors that Block Exit of Electrons from Photosystem II.- III. Plastoquinone Antagonists.- IV. Inhibitors of Electron Transfer Between Plastoquinone and cytochrome f.- V. Inhibitors of Plastocyanin.- VI. Inhibitors of Reactions in Ferredoxin-NADP+ Region.- References.- 17. Antibodies.- A. Introduction.- B. General Considerations on the Application of Antibodies to Studies of Membrane Function.- I. Properties of Antibodies.- II. Usefulness of Antibodies.- C. Results and Conclusions from Experiments with Antisera Against Individual Chloroplast Antigens.- D. Summary and Outlook.- References.- 18. Chemical Modification of Chloroplast Membranes.- A. Introduction.- B. N-ethylmaleimide (NEM).- C. Carbodiimides.- D. Lactoperoxidase-Catalyzed Iodination.- E. Trypsin.- F. Diazoniumbenzenesulfonic Acid (DABS).- References.- III. Energy Conservation.- 1. Photophosphorylation.- A. Relation of Electron Transport to Phosphorylation.- I. Electron Transport Patterns.- II. Coupling Between Electron Transport and Phosphorylation.- III. Energy Conservation Sites.- B. Chemiosmotic Principles of Coupled Electron Flow and ATP Synthesis.- I. The Chemiosmotic Hypothesis; and Others.- C. Evidence Relating to Operation of Chemiosmotic Principles in Chloroplasts.- I. Light-Driven Proton Uptake.- II. The Membrane Potential.- III. ATP-Driven Proton Uptake.- IV. Post-Illumination ATP Synthesis (“XE”).- V. Acid to Base Transition.- VI. Stoichiometrics and Thermodynamics.- D. Role of the Coupling Factor in Phosphorylation.- I. CF1 Enzymatic Activities.- II. Nature, Visualization, Location of the Protein.- III. Uncoupling, Recoupling, and Function in Proton Translocation.- IV. Function in Phosphorylation: Conformational Changes and Ligand Binding.- References.- 2. Proton and Ion Transport Across the Thylakoid Membranes.- A. Introduction.- B. The Mechanism of Light-Induced Proton Transport.- C. Secondary Ion Transport.- D. Electrochemical Potential of Protons Across the Thylakoid Membranes.- E. Ion Transport and the Mechanism of Uncoupling in Chloroplasts.- F. ATP-Induced Proton Transport.- G. Proton Transport in Subchloroplast Particles and Chromatophores.- References.- 3. Bound Nucleotides and Conformational Changes in Photophosphorylation.- A. Introduction.- B. Tightly Bound Nucleotides on Isolated and Membrane-Bound CF1.- C. Nucleotide and Nucleotide Analogs: Binding and Activity.- D. Antisera to CF1.- E. Conformational Coupling in Thylakoid Membranes.- References.- 4. The High Energy State.- A. Coupling Mechanism Hypotheses.- B. Experimental Evidence for the Existence of a High Energy State.- C. The Energy Level and the Energy Capacity of the High Energy State.- References.- 5. ATPase.- A. Introduction.- B. History of ATPase.- C. Feedback in ATPase.- D. Conformational Changes Relevant for ATPase.- E. Component Requirements of Membrane-Bound ATPase in General.- F. Relations of ATPase with Other Topics in Bioenergetics.- References.- 6. Post-Illumination ATP Formation.- A. Introduction.- B. Materials and Methods.- C. General Conditions for Post-Illumination ATP Formation.- I. Two-Stage ATP Synthesis.- II. Delayed ATP Synthesis in Flashing Light.- D. High Energy State Intermediate.- I. Chemical High Energy State Intermediate.- II. High Energy State and Membrane Property Changes.- E. Hypotheses on the Nature of the High Energy State Intermediate Xe.- F. Conclusions.- References.- 7. Chloroplast Coupling Factor.- A. Introduction.- B. Reconstitution of CF1 Depleted Chloroplasts..- C. Preparation of CF1.- D. Physical Properties of CF1 ..- E. Catalytic Properties of Activated CF1.- F. Subunit Structure of CF1.- G. Chemical Modification of CF1 and the Nature of its Active Site.- H. Nucleotide Binding and the Mechanism of ATP Formation.- References.- 8. Field Changes.- A. Introduction.- B. Quantitative Results on Changes of Membrane Potential.- C. Concept of Ion Transport Phenomena.- D. Relationship Between Membrane Potential and ATP Formation.- E. Summary.- References.- 9. Acid Base ATP Synthesis in Chloroplasts.- A. Introduction.- B. General Properties of the System.- C. Dicarboxylic Acid Requirement.- D. The Electrochemical Gradient of Protons and ATP Synthesis.- E. Kinetics.- F. Activation of ATP Hydrolysis.- References.- 10. Energy-Dependent Conformational Changes.- A. Introduction.- B. Conformational Mechanism of Energy Transduction.- C. Energy-Dependent Structural Changes in the Thylakoid Membrane.- D. Energy-Dependent Conformational Changes in Chloroplast ATPase.- References.- 11. Uncoupling of Electron Transport from Phosphorylation in Chloroplasts.- A. The Concept of Uncoupling.- B. Criteria of Uncoupling.- C. Types of Uncoupling by Typical Uncouplers.- I. Malfunctions of the Coupling Factor.- II. Malfunctions of the Membrane.- III. Uncoupling by Unknown Mechanisms.- D. A General Consideration of Mechanisms of Uncoupling.- References.- 12. Energy Transfer Inhibitors of Photophosphorylation in Chloroplasts.- A. Definition of Energy Transfer Inhibitors.- B. Energy Transfer Inhibitors Which Probably Exert Their Effects on Coupling Factor 1.- C. Energy Transfer Inhibitors Whose Site of Action is Unknown.- D. Some Observations and Conclusions.- References.- 13. Photophosphorylation in vivo.- A. Introduction.- B. Methods.- C. Cyclic Photophosphorylation in vivo.- D. Pseudocyclic Photophosphorylation in vivo.- E. Noncyclic Photophosphorylation in vivo.- F. Regulation of Photophosphorylation in vivo.- G. Photophosphorylation in vivo and CO2 Fixation.- H. Concluding Remarks.- References.- 14. Delayed Luminescence.- A. General.- B. Methods.- C. Phenomenology.- I. Emission and Excitation Spectrum.- II. Decay of Delayed Luminescence.- III. Activation of Delayed Luminescence.- IV. Delayed Luminescence and the S-States.- D. Origin of Delayed Luminescence in Photosynthetic Systems.- I. Delayed Luminescence from Plants.- II. Models for the Mechanism of Delayed Luminescence in Photosynthetic Systems.- References.- 15. Exchange Reactions.- A. Introduction.- B. The Development of the Study of Exchange Reactions in Photophosphorylation.- C. Mechanisms of Exchange Reactions.- D. Requirement for Substrates.- E. The Relations Between Exchange Reactions and the Mechanism of Photophosphorylation.- F. Energy Requirements.- G. Reconstitution of Vesicles Catalyzing PrATP Exchange.- References.- IV. Structure and Function.- 1. Introduction to Structure and Function of the Photosynthesis Apparatus.- A. The Membrane Components.- B. Ultrastructure of Thylakoid Membranes.- I. General Aspects.- II. The Outer (Matrix Side) Surface (OS).- III. The Inner (Lumen Side) Surface (IS).- IV. The Inner Zone of the Thylakoid Membrane..- C. The Relations Between Peripheral and Integral Particles.- D. Mobility of Membrane Particles.- E. The Identification of Membrane Constituents.- F. Correlation Between Ultrastructural and Serological Studies.- G. The Relationship Between Structure and Function.- H. Conclusions.- I. Freeze-Fracture Nomenclature Used for Studies of the Thylakoid Membrane.- References.- 2. The Topography of the Thylakoid Membrane of the Chloroplast.- A. Introduction.- B. The Distribution of Photosystems in the Chloroplast Lamellar Structure.- I. The Model.- II. The Supporting Evidence.- III. The Contradictions.- C. Reactivity in the Partition and Nonpartition Regions.- I. The Localization of NADP+ Reductase.- II. The Localization of ATPase.- III. The Consequences of the Model.- IV. The Role of Grana.- D. The Asymmetry of the Membrane.- I. The Morphological Evidence for the Asymmetry of the Membrane.- II. The Topography Across the Membrane.- III. The Topography Along the Membrane.- E. Concluding Remarks.- References.- 3. Subchloroplast Preparations.- A. Introduction.- B. The Fractionation Pattern.- C. The Distribution of Photosystems in the Grana and in the Intergrana Region of Chloroplasts from Higher Plants.- D. The Fractionation of Grana Stacks.- E. The Alteration of Reaction Properties and the Diversity of Chloroplast Fragments.- F. The Disorientation of Electron Carriers and the Effect of Plastocyanin.- G. Prospect.- References.- 4. Fragmentation.- A. Introduction.- B. Differentiation of the Photosystems.- C. Fragmentation of Chloroplasts.- D. Digitonin Subchloroplast Particles.- E. Triton Subchloroplast Particles.- F. Protein Composition of Subchloroplast Particles.- References.- 5. The Organization of Chlorophyll in vivo.- A. Introduction.- B. Existence of Multiple Chlorophyll-Proteins in Higher Plants.- C. P-700-Chlorophyll a-Protein.- D. The Light Harvesting Chlorophyll a/b-Protein.- E. Other Chlorophyll-Proteins in the Plant Kingdom.- F. Content of Chlorophyll-Proteins in Higher Plants.- G. Summary and Concluding Remarks.- References.- 6. Development of Chloroplast Structure and Function.- A. Ultrastructural Changes During Greening.- B. Spectroscopic Changes During Greening.- C. Chlorophyll Formation in Relation to Ultrastructural and Spectroscopic Changes.- D. Composition of Developing Thylakoids.- E. Development of Photochemical Activity.- F. Cytochrome and P-700 Redox Changes in Developing Plastids.- G. Correlation of Ultrastructural Changes with Function.- References.- V. Algal and Bacterial Photosynthesis.- 1. Eukaryotic Algae.- A. Introduction.- B. Objects.- C. Pigments and Pigment Systems.- D. Electron Transport and Photophosphorylation.- I. General Aspects.- II. Photosystems.- III. Noncyclic Electron Transport.- IV. Cyclic Electron Transport.- V. Pseudocyclic Electron Transport.- VI. Regulation of Electron Transport Systems.- VII. Special Electron Acceptors.- VIII. Photophosphorylation.- References.- 2. Blue-Green Algae.- A. Introduction.- B. Membrane Structure.- C. Major Accessory Pigments.- D. Photosystem II Reaction Centers.- E. Photosystem I.- F. Electron Transport from Photosystem I to NADP+.- G. Reactants Linking the Photosystems.- H. Water Splitting, Integrated Function and Phosphorylation.- References.- 3. Electron Transport and Photophosphorylation in Photosynthetic Bacteria.- A. Introduction.- B. Photosynthetic Electron Transport.- I. General.- II. Reaction Centers and Primary Events.- III. Components of the Electron Transport Chain.- IV. Sites of Coupled Phosphorylation.- V. Photoreduction of NAD+.- C. Energy Conservation.- I. General.- II. Proton Uptake, pH Gradient and Membrane Potential.- III. Quantitative Estimation of the Light-Induced Electrochemical Proton Gradient in Relation to the Phosphate Potential.- IV. The High Energy State and its Utilization (Postillumination and Acid-Base Phosphorylation).- V. ATPase, Pyrophosphatase and Exchange Reactions.- VI. Coupling Factors.- D. Concluding Remarks.- References.- Author Index.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews