Engineering Data Analytics

Engineering Data Analytics introduces students to foundational concepts within the discipline, the centrality of models in analysis methodologies, and the significance of probability in dealing with uncertain quantities. The textbook provides engineering students with the skillsets necessary to evaluate complex systems-whether physical or operational-when closed form or simulation approaches are unavailable or inadequate, as is often the case.

The book sheds light on the complex tapestry of engineering data analytics, covering statistical quality control to experimental design strategies. It offers a practical approach by including Python code for implementing various analytical models, illustrating the intersection of theoretical understanding with practical application. Key topics such as probability mass functions, cumulative distribution functions, and the interpretation of ANOVA using the concept of sample variance are given due attention to ensure a comprehensive coverage of the subject matter.

Engineering Data Analytics is designed to support coursework at the undergraduate level and is suitable for students who are pursuing degrees in engineering disciplines that necessitate a solid grasp of data analytics principles. It can also serve as a fundamental resource for graduate-level studies, where a more profound dive into the mechanisms and advanced applications of engineering data analytics is required.

1144363438
Engineering Data Analytics

Engineering Data Analytics introduces students to foundational concepts within the discipline, the centrality of models in analysis methodologies, and the significance of probability in dealing with uncertain quantities. The textbook provides engineering students with the skillsets necessary to evaluate complex systems-whether physical or operational-when closed form or simulation approaches are unavailable or inadequate, as is often the case.

The book sheds light on the complex tapestry of engineering data analytics, covering statistical quality control to experimental design strategies. It offers a practical approach by including Python code for implementing various analytical models, illustrating the intersection of theoretical understanding with practical application. Key topics such as probability mass functions, cumulative distribution functions, and the interpretation of ANOVA using the concept of sample variance are given due attention to ensure a comprehensive coverage of the subject matter.

Engineering Data Analytics is designed to support coursework at the undergraduate level and is suitable for students who are pursuing degrees in engineering disciplines that necessitate a solid grasp of data analytics principles. It can also serve as a fundamental resource for graduate-level studies, where a more profound dive into the mechanisms and advanced applications of engineering data analytics is required.

119.95 In Stock
Engineering Data Analytics

Engineering Data Analytics

by David S Kim
Engineering Data Analytics

Engineering Data Analytics

by David S Kim

Paperback

$119.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Engineering Data Analytics introduces students to foundational concepts within the discipline, the centrality of models in analysis methodologies, and the significance of probability in dealing with uncertain quantities. The textbook provides engineering students with the skillsets necessary to evaluate complex systems-whether physical or operational-when closed form or simulation approaches are unavailable or inadequate, as is often the case.

The book sheds light on the complex tapestry of engineering data analytics, covering statistical quality control to experimental design strategies. It offers a practical approach by including Python code for implementing various analytical models, illustrating the intersection of theoretical understanding with practical application. Key topics such as probability mass functions, cumulative distribution functions, and the interpretation of ANOVA using the concept of sample variance are given due attention to ensure a comprehensive coverage of the subject matter.

Engineering Data Analytics is designed to support coursework at the undergraduate level and is suitable for students who are pursuing degrees in engineering disciplines that necessitate a solid grasp of data analytics principles. It can also serve as a fundamental resource for graduate-level studies, where a more profound dive into the mechanisms and advanced applications of engineering data analytics is required.


Product Details

ISBN-13: 9798823345859
Publisher: Cognella Academic Publishing
Publication date: 09/10/2024
Pages: 346
Product dimensions: 8.00(w) x 10.00(h) x 0.72(d)
From the B&N Reads Blog

Customer Reviews