Learning TensorFlow.js: Powerful Machine Learning in JavaScript
Given the demand for AI and the ubiquity of JavaScript, TensorFlow.js was inevitable. With this Google framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde (Google Developer Expert in machine learning and the web) provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.

You'll begin by working through some basic examples in TensorFlow.js before diving deeper into neural network architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you'll know how to build and deploy production-ready deep learning systems with TensorFlow.js.

  • Explore tensors, the most fundamental structure of machine learning
  • Convert data into tensors and back with a real-world example
  • Combine AI with the web using TensorFlow.js
  • Use resources to convert, train, and manage machine learning data
  • Build and train your own training models from scratch
1138954413
Learning TensorFlow.js: Powerful Machine Learning in JavaScript
Given the demand for AI and the ubiquity of JavaScript, TensorFlow.js was inevitable. With this Google framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde (Google Developer Expert in machine learning and the web) provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.

You'll begin by working through some basic examples in TensorFlow.js before diving deeper into neural network architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you'll know how to build and deploy production-ready deep learning systems with TensorFlow.js.

  • Explore tensors, the most fundamental structure of machine learning
  • Convert data into tensors and back with a real-world example
  • Combine AI with the web using TensorFlow.js
  • Use resources to convert, train, and manage machine learning data
  • Build and train your own training models from scratch
55.99 In Stock
Learning TensorFlow.js: Powerful Machine Learning in JavaScript

Learning TensorFlow.js: Powerful Machine Learning in JavaScript

by Gant Laborde
Learning TensorFlow.js: Powerful Machine Learning in JavaScript

Learning TensorFlow.js: Powerful Machine Learning in JavaScript

by Gant Laborde

Paperback

$55.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Given the demand for AI and the ubiquity of JavaScript, TensorFlow.js was inevitable. With this Google framework, seasoned AI veterans and web developers alike can help propel the future of AI-driven websites. In this guide, author Gant Laborde (Google Developer Expert in machine learning and the web) provides a hands-on end-to-end approach to TensorFlow.js fundamentals for a broad technical audience that includes data scientists, engineers, web developers, students, and researchers.

You'll begin by working through some basic examples in TensorFlow.js before diving deeper into neural network architectures, DataFrames, TensorFlow Hub, model conversion, transfer learning, and more. Once you finish this book, you'll know how to build and deploy production-ready deep learning systems with TensorFlow.js.

  • Explore tensors, the most fundamental structure of machine learning
  • Convert data into tensors and back with a real-world example
  • Combine AI with the web using TensorFlow.js
  • Use resources to convert, train, and manage machine learning data
  • Build and train your own training models from scratch

Product Details

ISBN-13: 9781492090793
Publisher: O'Reilly Media, Incorporated
Publication date: 06/01/2021
Pages: 338
Product dimensions: 7.00(w) x 9.10(h) x 0.90(d)
From the B&N Reads Blog

Customer Reviews