Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms
Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers.
1101516252
Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms
Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers.
109.99 In Stock
Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

by Jean-Marc Adamo
Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

by Jean-Marc Adamo

Hardcover(2001)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Unavailable at Glendora.

Related collections and offers


Overview

Data mining includes a wide range of activities such as classification, clustering, similarity analysis, summarization, association rule and sequential pattern discovery, and so forth. The book focuses on the last two previously listed activities. It provides a unified presentation of algorithms for association rule and sequential pattern discovery. For both mining problems, the presentation relies on the lattice structure of the search space. All algorithms are built as processes running on this structure. Proving their properties takes advantage of the mathematical properties of the structure. Part of the motivation for writing this book was postgraduate teaching. One of the main intentions was to make the book a suitable support for the clear exposition of problems and algorithms as well as a sound base for further discussion and investigation. Since the book only assumes elementary mathematical knowledge in the domains of lattices, combinatorial optimization, probability calculus, and statistics, it is fit for use by undergraduate students as well. The algorithms are described in a C-like pseudo programming language. The computations are shown in great detail. This makes the book also fit for use by implementers: computer scientists in many domains as well as industry engineers.

Product Details

ISBN-13: 9780387950488
Publisher: Springer New York
Publication date: 12/28/2000
Edition description: 2001
Pages: 254
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)
From the B&N Reads Blog

Customer Reviews