Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System
This book presents few novel Discrete-time Sliding Mode (DSM) prools for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The prools intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the prools are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) prools using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) prools, Event-triggered DSM prools for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM prools for leader-following consensus of heterogeneous DMASs.

Special emphasis is given to the practical implementation of each proposed DSM prool for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.
1137040301
Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System
This book presents few novel Discrete-time Sliding Mode (DSM) prools for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The prools intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the prools are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) prools using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) prools, Event-triggered DSM prools for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM prools for leader-following consensus of heterogeneous DMASs.

Special emphasis is given to the practical implementation of each proposed DSM prool for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.
129.99 In Stock
Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System

Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System

Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System

Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System

Paperback(1st ed. 2021)

$129.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Unavailable at Glendora.

Related collections and offers


Overview

This book presents few novel Discrete-time Sliding Mode (DSM) prools for leader-following consensus of Discrete Multi-Agent Systems (DMASs). The prools intend to achieve the consensus in finite time steps and also tackle the corresponding uncertainties. Based on the communication graph topology of multi-agent systems, the prools are divided into two groups, namely (i) Fixed graph topology and (ii) Switching graph topology. The coverage begins with the design of Discrete-time Sliding Mode (DSM) prools using Gao’s reaching law and power rate reaching law for the synchronization of linear DMASs by using the exchange of information between the agents and the leader to achieve a common goal. Then, in a subsequent chapter, analysis for no. of fixed-time steps required for the leader-following consensus is presented. The book also includes chapters on the design of Discrete-time Higher-order Sliding Mode (DHSM) prools, Event-triggered DSM prools for the leader-following consensus of DMASs. A chapter is also included on the design of DHSM prools for leader-following consensus of heterogeneous DMASs.

Special emphasis is given to the practical implementation of each proposed DSM prool for achieving leader-following consensus of helicopter systems, flexible joint robotic arms, and rigid joint robotic arms. This book offers a ready reference guide for graduate students and researchers working in the areas of control, automation, and communication engineering, and in particular the cooperative control of multi-agent systems. It will also benefit professional engineers working to design and implement robust controllers for power systems, autonomous vehicles, military surveillance, smartgrids/microgrids, vehicle traffic management, robotic teams, and aerial robots.

Product Details

ISBN-13: 9789811563133
Publisher: Springer Nature Singapore
Publication date: 08/28/2020
Series: Studies in Systems, Decision and Control , #303
Edition description: 1st ed. 2021
Pages: 121
Product dimensions: 6.10(w) x 9.25(h) x (d)
From the B&N Reads Blog

Customer Reviews